- 15,524
- 769
You compare two infinite sets by trying to put them into a one-to-one correspondence with one another. The sets have the same cardinality if this one-to-one correspondence can be constructed. If all members of one set can be mapped to members of the other set, and that other set has members that have not yet been mapped, the first set has a lesser cardinality than does the other.
Alternatively, given two sets one can assume that the two sets do have the same cardinality, that is, assume a one-to-one correspondence exists between the two sets. Now suppose you can construct a member of the second set that is not in that one-to-one correspondence. You've just arrived at a contradiction. This means the initial assumption that the two sets have the same cardinality is false.
This is exactly how Cantor showed that the reals have a greater cardinality than do the integers. Here's how he did it.
Assume the reals between 0 and 1, exclusive, can be put into a one-to-one correspondence with the integers. That means there's some real number in (0,1) that we designate as real #1, another that we designate as real #2, and so on. Now I'll construct a real number between 0 and 1 that isn't in this list. I'll start with the tenths digit of real #1 and pick some other digit that's different from that. This is the tenths digit of my constructed number. I'll do the same with the hundredths digit of real #2, the thousandths digit of real #3, and so on. My constructed number is different from real #1 by construction, different from real #2, different from real #3, and so on. It is not in my list, and yet by construction it is a real number in (0,1). Contradiction! The reals between 0 and 1 cannot be put into a one-to-one correspondence with the integers. (On the other hand, it's easy to make a one-to-one correspondence between (0,1) and ℝ.) The reals between 0 and 1 form an uncountable set, and thus so do the reals.
Alternatively, given two sets one can assume that the two sets do have the same cardinality, that is, assume a one-to-one correspondence exists between the two sets. Now suppose you can construct a member of the second set that is not in that one-to-one correspondence. You've just arrived at a contradiction. This means the initial assumption that the two sets have the same cardinality is false.
This is exactly how Cantor showed that the reals have a greater cardinality than do the integers. Here's how he did it.
Assume the reals between 0 and 1, exclusive, can be put into a one-to-one correspondence with the integers. That means there's some real number in (0,1) that we designate as real #1, another that we designate as real #2, and so on. Now I'll construct a real number between 0 and 1 that isn't in this list. I'll start with the tenths digit of real #1 and pick some other digit that's different from that. This is the tenths digit of my constructed number. I'll do the same with the hundredths digit of real #2, the thousandths digit of real #3, and so on. My constructed number is different from real #1 by construction, different from real #2, different from real #3, and so on. It is not in my list, and yet by construction it is a real number in (0,1). Contradiction! The reals between 0 and 1 cannot be put into a one-to-one correspondence with the integers. (On the other hand, it's easy to make a one-to-one correspondence between (0,1) and ℝ.) The reals between 0 and 1 form an uncountable set, and thus so do the reals.