Hello,(adsbygoogle = window.adsbygoogle || []).push({});

let's suppose I have two functions [itex]f,g\in L^2(\mathbb{R})[/itex] and I consider the inner product [tex]\left\langle f,g \right\rangle = \int_\mathbb{R} f(x)g(x)dx[/tex]

If I transform the functionfin the following way [itex]f(x) \mapsto f(\phi(u))[/itex], where [itex]\phi:\mathbb{R}\rightarrow \mathbb{R}[/itex] is smooth and bijective, I can still calculate the inner product [tex]\left\langle f \circ \phi,g \right\rangle = \int_\mathbb{R} f(\phi(u))g(u)du[/tex] Instead, if [itex]\phi:U\rightarrow \mathbb{R}[/itex] is smooth and bijective butUis not necessarily ℝ, I can't calculuate the inner product [itex]\left\langle f \circ \phi,g \right\rangle[/itex] anymore.

Does this happen because in the first case [itex]\phi[/itex] acted as a mapping [itex]L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})[/itex] to the same vector space, while in the second case we had a mapping [itex]L^2(\mathbb{R}) \rightarrow L^2(U;\mathbb{R})[/itex] which is a different vector space. Am I right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Question on inner products between functions

**Physics Forums | Science Articles, Homework Help, Discussion**