Graduate Question on Zeno time derivation

  • Thread starter Thread starter Mainframes
  • Start date Start date
  • Tags Tags
    Derivation
Click For Summary
SUMMARY

The forum discussion focuses on the derivation of Zeno time from two academic papers: "Quantum Zeno dynamics: mathematical and physical aspects" by Facchi and Pascazio (2008) and "Classical limit of the quantum Zeno effect by environmental decoherence" by Bedingham and Halliwell (2014). The user struggles with the algebraic manipulation required to derive Zeno time as presented in equation (6) of the first paper and equation (1.6) of the second paper. Key insights include the use of projectors P and Q, and the calculation of τ_Z using the expectation values of the Hamiltonian.

PREREQUISITES
  • Understanding of quantum mechanics concepts, specifically Zeno dynamics.
  • Familiarity with algebraic manipulation in quantum mechanics.
  • Knowledge of Hamiltonian operators and their expectation values.
  • Experience with mathematical notation used in quantum physics, including projectors.
NEXT STEPS
  • Study the derivation of Zeno time in "Quantum Zeno dynamics: mathematical and physical aspects" (Facchi & Pascazio, 2008).
  • Examine the algebraic techniques used in "Classical limit of the quantum Zeno effect by environmental decoherence" (Bedingham & Halliwell, 2014).
  • Learn about the implications of projectors in quantum mechanics.
  • Research the mathematical properties of expectation values in quantum systems.
USEFUL FOR

Researchers, graduate students, and professionals in quantum mechanics, particularly those focused on Zeno effects and their mathematical derivations.

Mainframes
Messages
17
Reaction score
3
Hi,

I'm trying to follow the derivation of the Zeno time from two sources and am struggling. I think I'm missing some sort of algebraic trick and any tips would be appreciated. A bit more detail below.

In the attached paper \citep{Facchi_2008}, the Zeno time (equation (6)) is derived from equation (4) and equation (5), but I don't see how.

1705786258003.png


In the second attached paper \citep{PhysRevA.89.042116}, the Zeno time is derived in equation (1.6) though I cannot even see how how equation (1.3) is derived (let alone the Zeno time).

1705786470408.png
REFERENCES

@article{Facchi_2008,
doi = {10.1088/1751-8113/41/49/493001},
url = {https://dx.doi.org/10.1088/1751-8113/41/49/493001},
year = {2008},
month = {oct},
publisher = {},
volume = {41},
number = {49},
pages = {493001},
author = {P Facchi and S Pascazio},
title = {Quantum Zeno dynamics: mathematical and physical aspects},
journal = {Journal of Physics A: Mathematical and Theoretical},
}

@article{PhysRevA.89.042116,
title = {Classical limit of the quantum Zeno effect by environmental decoherence},
author = {Bedingham, D. and Halliwell, J. J.},
journal = {Phys. Rev. A},
volume = {89},
issue = {4},
pages = {042116},
numpages = {17},
year = {2014},
month = {Apr},
publisher = {American Physical Society},
doi = {10.1103/PhysRevA.89.042116},
url = {https://link.aps.org/doi/10.1103/PhysRevA.89.042116}
}
 

Attachments

Physics news on Phys.org
Hint: ##P## and ##Q## are projectors, i.e. ##P^2=P##, ##Q^2=Q##, ##PQ=QP=0##.
 
Demystifier said:
Hint: ##P## and ##Q## are projectors, i.e. ##P^2=P##, ##Q^2=Q##, ##PQ=QP=0##.

Thank you very much for your reply. I did try using those relationships (and I understand why they are true), however, I still could not get the algebra to work.

Furthermore, in equation (1.3) of the below extract frrom \citep{PhysRevA.89.042116}, I cannot even see how the ##\epsilon^2## term on the RHS of the equation (1.3) is possible. The reason for this is that I believe any ##\epsilon^2## term on the LHS would be of the form ##\frac{\epsilon^2}{\hbar^2}##.

This, together with my inability to get the algebra to match, led me to believe I am missing something else fundamental.
1705827783054.png
 
Mainframes said:
Thank you very much for your reply. I did try using those relationships (and I understand why they are true), however, I still could not get the algebra to work.
First observe that from ##P=|\psi_0\rangle\langle\psi_0|## we have
$$P|\psi_0\rangle = |\psi_0\rangle , \;\;\; Q|\psi_0\rangle = 0.$$
The goal is to compute
$$\tau_Z^{-2} = \langle\psi_0|H^2| \psi_0\rangle - \langle\psi_0|H| \psi_0\rangle^2.$$
The second term is proportional to
$$\langle\psi_0|H| \psi_0\rangle^2=
\langle\psi_0|H| \psi_0\rangle \langle\psi_0|H| \psi_0\rangle
= \langle\psi_0|HPH| \psi_0\rangle ,$$
while the first term is
$$\langle\psi_0|H^2| \psi_0\rangle = \langle\psi_0| PH(Q+P)HP | \psi_0\rangle$$
$$=\langle\psi_0| PHQHP | \psi_0\rangle + \langle\psi_0| PHPHP | \psi_0\rangle$$
$$=\langle\psi_0| PHQQHP | \psi_0\rangle + \langle\psi_0| HPH | \psi_0\rangle$$
$$=\langle\psi_0| H_{int}^2 | \psi_0\rangle + \langle\psi_0| H | \psi_0\rangle^2 .$$
Combining all this we get
$$\tau_Z^{-2} = \langle\psi_0| H_{int}^2 | \psi_0\rangle$$
which is Eq. (6).
 
Last edited:
  • Like
Likes Lord Jestocost and Nugatory
Demystifier said:
First observe that from ##P=|\psi_0\rangle\langle\psi_0|## we have
$$P|\psi_0\rangle = |\psi_0\rangle , \;\;\; Q|\psi_0\rangle = 0.$$
The goal is to compute
$$\tau_Z^{-2} = \langle\psi_0|H^2| \psi_0\rangle - \langle\psi_0|H| \psi_0\rangle^2.$$
The second term is proportional to
$$\langle\psi_0|H| \psi_0\rangle^2=
\langle\psi_0|H| \psi_0\rangle \langle\psi_0|H| \psi_0\rangle
= \langle\psi_0|HPH| \psi_0\rangle ,$$
while the first terms is
$$\langle\psi_0|H^2| \psi_0\rangle = \langle\psi_0| PH(Q+P)HP | \psi_0\rangle$$
$$=\langle\psi_0| PHQHP | \psi_0\rangle + \langle\psi_0| PHPHP | \psi_0\rangle$$
$$=\langle\psi_0| PHQQHP | \psi_0\rangle + \langle\psi_0| HPH | \psi_0\rangle$$
$$=\langle\psi_0| H_{int}^2 | \psi_0\rangle + \langle\psi_0| H | \psi_0\rangle^2 .$$
Combining all this we get
$$\tau_Z^{-2} = \langle\psi_0| H_{int}^2 | \psi_0\rangle$$
which is Eq. (6).
This is brilliant. Thank you so much for this (it has certainly Demystified the result to me)
 
  • Like
Likes Demystifier

Similar threads

  • · Replies 72 ·
3
Replies
72
Views
10K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K