Question on Zeno time derivation

  • Context: Graduate 
  • Thread starter Thread starter Mainframes
  • Start date Start date
  • Tags Tags
    Derivation
Click For Summary

Discussion Overview

The discussion revolves around the derivation of the Zeno time from two academic papers, focusing on the mathematical steps involved in the derivation process. Participants express confusion regarding specific equations and the algebraic manipulations required to understand the derivation.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant struggles to follow the derivation of the Zeno time from two sources, indicating a potential missing algebraic trick.
  • Another participant provides hints about the properties of projectors, suggesting that ##P## and ##Q## satisfy specific algebraic relationships.
  • A participant expresses difficulty in understanding how an ##\epsilon^2## term appears in one of the equations, questioning its validity based on their understanding of the terms involved.
  • Further elaboration on the computation of ##\tau_Z^{-2## is presented, detailing the relationships between various terms and how they contribute to the final expression for Zeno time.
  • A later reply acknowledges the clarity brought by the previous explanation, indicating that it helped demystify the result for them.

Areas of Agreement / Disagreement

Participants do not reach a consensus, as some express confusion and seek clarification while others provide insights and hints. The discussion remains unresolved regarding the specific algebraic steps and the validity of certain terms.

Contextual Notes

Participants mention specific equations from the referenced papers, indicating that their understanding is contingent on the definitions and relationships presented in those sources. There are unresolved mathematical steps and assumptions that may affect the clarity of the derivation.

Mainframes
Messages
17
Reaction score
3
Hi,

I'm trying to follow the derivation of the Zeno time from two sources and am struggling. I think I'm missing some sort of algebraic trick and any tips would be appreciated. A bit more detail below.

In the attached paper \citep{Facchi_2008}, the Zeno time (equation (6)) is derived from equation (4) and equation (5), but I don't see how.

1705786258003.png


In the second attached paper \citep{PhysRevA.89.042116}, the Zeno time is derived in equation (1.6) though I cannot even see how how equation (1.3) is derived (let alone the Zeno time).

1705786470408.png
REFERENCES

@article{Facchi_2008,
doi = {10.1088/1751-8113/41/49/493001},
url = {https://dx.doi.org/10.1088/1751-8113/41/49/493001},
year = {2008},
month = {oct},
publisher = {},
volume = {41},
number = {49},
pages = {493001},
author = {P Facchi and S Pascazio},
title = {Quantum Zeno dynamics: mathematical and physical aspects},
journal = {Journal of Physics A: Mathematical and Theoretical},
}

@article{PhysRevA.89.042116,
title = {Classical limit of the quantum Zeno effect by environmental decoherence},
author = {Bedingham, D. and Halliwell, J. J.},
journal = {Phys. Rev. A},
volume = {89},
issue = {4},
pages = {042116},
numpages = {17},
year = {2014},
month = {Apr},
publisher = {American Physical Society},
doi = {10.1103/PhysRevA.89.042116},
url = {https://link.aps.org/doi/10.1103/PhysRevA.89.042116}
}
 

Attachments

Physics news on Phys.org
Hint: ##P## and ##Q## are projectors, i.e. ##P^2=P##, ##Q^2=Q##, ##PQ=QP=0##.
 
Demystifier said:
Hint: ##P## and ##Q## are projectors, i.e. ##P^2=P##, ##Q^2=Q##, ##PQ=QP=0##.

Thank you very much for your reply. I did try using those relationships (and I understand why they are true), however, I still could not get the algebra to work.

Furthermore, in equation (1.3) of the below extract frrom \citep{PhysRevA.89.042116}, I cannot even see how the ##\epsilon^2## term on the RHS of the equation (1.3) is possible. The reason for this is that I believe any ##\epsilon^2## term on the LHS would be of the form ##\frac{\epsilon^2}{\hbar^2}##.

This, together with my inability to get the algebra to match, led me to believe I am missing something else fundamental.
1705827783054.png
 
Mainframes said:
Thank you very much for your reply. I did try using those relationships (and I understand why they are true), however, I still could not get the algebra to work.
First observe that from ##P=|\psi_0\rangle\langle\psi_0|## we have
$$P|\psi_0\rangle = |\psi_0\rangle , \;\;\; Q|\psi_0\rangle = 0.$$
The goal is to compute
$$\tau_Z^{-2} = \langle\psi_0|H^2| \psi_0\rangle - \langle\psi_0|H| \psi_0\rangle^2.$$
The second term is proportional to
$$\langle\psi_0|H| \psi_0\rangle^2=
\langle\psi_0|H| \psi_0\rangle \langle\psi_0|H| \psi_0\rangle
= \langle\psi_0|HPH| \psi_0\rangle ,$$
while the first term is
$$\langle\psi_0|H^2| \psi_0\rangle = \langle\psi_0| PH(Q+P)HP | \psi_0\rangle$$
$$=\langle\psi_0| PHQHP | \psi_0\rangle + \langle\psi_0| PHPHP | \psi_0\rangle$$
$$=\langle\psi_0| PHQQHP | \psi_0\rangle + \langle\psi_0| HPH | \psi_0\rangle$$
$$=\langle\psi_0| H_{int}^2 | \psi_0\rangle + \langle\psi_0| H | \psi_0\rangle^2 .$$
Combining all this we get
$$\tau_Z^{-2} = \langle\psi_0| H_{int}^2 | \psi_0\rangle$$
which is Eq. (6).
 
Last edited:
  • Like
Likes   Reactions: Lord Jestocost and Nugatory
Demystifier said:
First observe that from ##P=|\psi_0\rangle\langle\psi_0|## we have
$$P|\psi_0\rangle = |\psi_0\rangle , \;\;\; Q|\psi_0\rangle = 0.$$
The goal is to compute
$$\tau_Z^{-2} = \langle\psi_0|H^2| \psi_0\rangle - \langle\psi_0|H| \psi_0\rangle^2.$$
The second term is proportional to
$$\langle\psi_0|H| \psi_0\rangle^2=
\langle\psi_0|H| \psi_0\rangle \langle\psi_0|H| \psi_0\rangle
= \langle\psi_0|HPH| \psi_0\rangle ,$$
while the first terms is
$$\langle\psi_0|H^2| \psi_0\rangle = \langle\psi_0| PH(Q+P)HP | \psi_0\rangle$$
$$=\langle\psi_0| PHQHP | \psi_0\rangle + \langle\psi_0| PHPHP | \psi_0\rangle$$
$$=\langle\psi_0| PHQQHP | \psi_0\rangle + \langle\psi_0| HPH | \psi_0\rangle$$
$$=\langle\psi_0| H_{int}^2 | \psi_0\rangle + \langle\psi_0| H | \psi_0\rangle^2 .$$
Combining all this we get
$$\tau_Z^{-2} = \langle\psi_0| H_{int}^2 | \psi_0\rangle$$
which is Eq. (6).
This is brilliant. Thank you so much for this (it has certainly Demystified the result to me)
 
  • Like
Likes   Reactions: Demystifier

Similar threads

  • · Replies 72 ·
3
Replies
72
Views
10K
  • · Replies 40 ·
2
Replies
40
Views
8K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 62 ·
3
Replies
62
Views
11K
  • · Replies 10 ·
Replies
10
Views
4K