cmb
- 1,128
- 128
FWIW, to solve the issues of stall on the retreating rotor blades, of course the other solution is to use contra-rotating blades.
By having two rotors, the retreating blades can be allowed to stall out (retreating tip speeds drop to zero relative velocity) because the two balance each other and the net centre of pressure from both rotors will then always remain along the midline of the airframe.
Thus, whereas a single rotor with sub-sonic rotor tips can achieve a maximum of 1/3 speed of sound or so (because there still has to be a finite rearward tip velocity on the retreating blade), a contra-rotating helicopter could theoretically be run close up to speed of sound tip velocity with the retreating blade generating no lift at zero air speed, therefore can get up to the maximum possible for a rotary wing aircraft of 1/2 speed of sound.
e.g. Sikorsky X2.
By having two rotors, the retreating blades can be allowed to stall out (retreating tip speeds drop to zero relative velocity) because the two balance each other and the net centre of pressure from both rotors will then always remain along the midline of the airframe.
Thus, whereas a single rotor with sub-sonic rotor tips can achieve a maximum of 1/3 speed of sound or so (because there still has to be a finite rearward tip velocity on the retreating blade), a contra-rotating helicopter could theoretically be run close up to speed of sound tip velocity with the retreating blade generating no lift at zero air speed, therefore can get up to the maximum possible for a rotary wing aircraft of 1/2 speed of sound.
e.g. Sikorsky X2.