Quick question about Schwarz's theorem

  • Thread starter Thread starter Felafel
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Schwarz's theorem states that if the mixed partial derivatives of a function f(x,y) are continuous at a point (a,b), it does not guarantee that f is continuous at that point. While the continuity of the mixed partials implies that f is twice differentiable and globally Lipschitz, it does not ensure continuity in all directions approaching (a,b). An example illustrates this, where a function can have continuous partial derivatives but still be discontinuous at the origin. The discussion emphasizes that partial derivatives do not have the same implications for continuity as derivatives do in single-variable functions. Understanding differentiability in multiple dimensions is crucial for grasping these concepts.
Felafel
Messages
170
Reaction score
0

Homework Statement



f(x,y) is a two variables function for which the hypothesis of Schwarz's theorem hold in a point (a,b).
is f continuous in (a,b)?

The Attempt at a Solution



I think it is, because being the two mixed partials continuous in (a,b) the function is twice differentiable, and therefore globally Lipschitz, which implies continuity.
Am I right?
 
Physics news on Phys.org
Are you referring to the Schwarz' theorem that says if ##f_{xy}## and ##f_{yx}## are both continuous at point (a,b) there is a neighborhood U of (a,b,) where## f, f_x, f_y,f_{xy}, f_{yx} ## all exist and ##f_{xy} = f_{yx}## at (a,b)?

We cannot infer from this that f is continuous at (a,b). That seems unintuitive, because if you said the same for a function of a single variable, of course it would be continuous.

The problem is that existence or continuity of the partial derivatives is nowhere near as strong as existence of a derivative of a function of 1 variable. The partials only tell you that there is continuity along two different lines coming into (a,b). The function could fail to be continuous at (a,b) because it has a discontinuity there coming in along some other path.

Remember that continuity at (a,b) means that for any ##\epsilon## > 0 there exists some neighborhood U of (a,b) where (x,y) ##\in## U ##\Rightarrow## |f(x,y)-f(a,b)| < ##\epsilon##.

Okay, an example. Let (a,b) = (0,0). Let f(x,y) = x when x = 0 and y when y = 0, but f(x,y) = 2x +2y + 1 if x and y are not zero. Then ##f_x##(0) = ##f_y##(0) = 1 and ##f_{xy}(0)## = ##f_{yx}(0) = 0.## But as per the definition above, f is not continuous at 0.

I believe part of the point of this problem is precisely to show that partial derivatives are not analogous to the derivative in one dimension. There is in fact an analogy in multiple dimensions -- you can look up what "differentiability" means for functions of multiple variables.
 
  • Like
Likes 1 person
super! thank you very much :D
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K