Radioactive decay characteristics as measured by a dosimeter

Click For Summary
SUMMARY

The discussion centers on the measurement of dose levels by a dosimeter placed 1 meter away from a gamma radiation source that begins decaying upon activation. It is established that the dose rate decreases exponentially over time, consistent with the principles of radioactive decay. The dose received by the dosimeter integrates over time, continuously increasing, while the rate of dose diminishes exponentially rather than linearly within the half-life period. Clarifications were made regarding the terminology, emphasizing the distinction between "dose" and "dose rate."

PREREQUISITES
  • Understanding of radioactive decay principles, specifically exponential decay.
  • Familiarity with dosimetry and how dosimeters measure radiation exposure.
  • Knowledge of half-life concepts and their implications in radiation measurement.
  • Basic grasp of radiation types, particularly gamma radiation.
NEXT STEPS
  • Research the mathematical models of radioactive decay, focusing on exponential decay functions.
  • Explore dosimeter calibration techniques for accurate radiation measurement.
  • Learn about the differences between dose and dose rate in radiation safety contexts.
  • Investigate the graphical representation of decay rates and their implications in radiation exposure assessments.
USEFUL FOR

Radiation safety professionals, physicists, dosimetry technicians, and anyone involved in measuring or managing exposure to gamma radiation.

artis
Messages
1,479
Reaction score
977
If I put a dosimeter 1 meter away from a gamma sample that starts decaying at the moment I switch on the dosimeter then how would I measure the dose level received by the dosimeter, would it gradually decrease over the first half life or would it stay the same throughout the first half life until the end of the half life?

I ask this because I know isotopes have a exponential rate at which they decay , as in the majority of atoms can decay within the first part or the last part of the half life but how does that translate into actual levels seen by dosimeter?
 
Physics news on Phys.org
artis said:
If I put a dosimeter 1 meter away from a gamma sample that starts decaying at the moment I switch on the dosimeter then how would I measure the dose level received by the dosimeter, would it gradually decrease over the first half life or would it stay the same throughout the first half life until the end of the half life?

I ask this because I know isotopes have a exponential rate at which they decay

The decrease of dose level would be gradual and continuous.
 
See the graph at the top of this page: https://en.wikipedia.org/wiki/Exponential_decay

It shows the amount remaining undecayed as time passes. The decay rate (number of decays per second) follows a similar curve because it's proportional to the remaining amount at every point in time.
 
Let's be careful here. The dose is integrated so will always increase. The rate of dose will decrease exponentially.
 
  • Like
Likes   Reactions: PSRB191921
Well I was thinking in terms of real time radiation strength received by dosimeter rather than an accumulated dose of a person over a time interval.
I understand the dose decreases exponentially as it halves after each half life so 1/4 is left after the second half life but I was wondering how it decreases specifically within the margin of one half life, more linearly or also exponentially ?jtbell the graph you referred to, does it mean that the first half lifes decay almost linearly within the margin of half life itself and the later ones decay more exponentially within the same margin of that half life?
 
Don't call it dose if you mean the dose rate. That's like taking about the maximal distance of car if you mean the top speed.
artis said:
more linearly or also exponentially ?
The dose rate decreases exponentially. That is a general statement that applies to all times. There is nothing special about the half-life time.
 
  • Like
Likes   Reactions: Vanadium 50
artis said:
jtbell the graph you referred to, does it mean that the first half lifes decay almost linearly within the margin of half life itself and the later ones decay more exponentially within the same margin of that half life?
For which curve in that graph do you see a transition between linear and exponential, and at what time?
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K