Raising and Lowering Operators in the Lipkin Model

  • Thread starter Thread starter Rubiss
  • Start date Start date
  • Tags Tags
    Model Operators
Click For Summary

Homework Help Overview

The discussion revolves around calculating the expectation value of an operator in the context of the Lipkin model of nuclear physics. The problem is primarily mathematical, focusing on the manipulation of operators and the implications of anticommutation relations.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to explicitly calculate the expectation value using the anticommutation relations and is exploring the implications of the Kronecker delta functions in their calculations. Some participants question the assumptions regarding the equality of indices in the products and sums, particularly concerning the values of p, p', and p''.

Discussion Status

Participants are actively engaging with the mathematical expressions and questioning the validity of certain steps in the calculations. There is recognition that if p does not equal p'', the resulting sums yield zero, which complicates the original poster's goal of achieving a total of four. Some guidance has been provided regarding the implications of the Kronecker delta functions and the structure of the products and sums.

Contextual Notes

The original poster is constrained by the requirement to achieve a specific numerical result, which is leading to confusion regarding the manipulation of the indices and the overall structure of the expression. There is an ongoing exploration of the assumptions underlying the mathematical setup.

Rubiss
Messages
21
Reaction score
0

Homework Statement



I am trying to calculate the expectation value of an operator in the Lipkin model of nuclear physics. The background isn't important because my problem in really just a math problem.

Homework Equations



The anticommutation relation

\begin{align*}
a_{p\sigma} a_{p'\sigma'}^{\dagger} + a^{\dagger}_{p'\sigma'} a_{p\sigma} = \delta_{pp'}\delta_{\sigma\sigma'}
\end{align*}

Whenever an annihilation operator acts on the vacuum, you get 0.

The Attempt at a Solution



I will be very explicit in what I am doing.

\begin{align*}
\langle \Psi | H_{0} | \Psi \rangle
&= \left[ \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) \right] \left[ \left( \frac{1}{2} \right) \epsilon \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right] \\
%
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma} \sum_{\sigma'} \sum_{\sigma''} C_{\alpha\sigma}^{*} C_{\alpha\sigma''} \sigma' a_{p\sigma} a^{\dagger}_{p'\sigma'} a_{p'\sigma'} a_{p''\sigma''}^{\dagger} | 0 \rangle \\
%
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma} \sum_{\sigma'} \sum_{\sigma''} C_{\alpha\sigma}^{*} C_{\alpha\sigma''} \sigma' \left( \delta_{pp'}\delta_{\sigma\sigma'} - a_{p'\sigma'}^{\dagger} a_{p\sigma} \right) \left( \delta_{p'p''}\delta_{\sigma'\sigma''} - a_{p''\sigma''}^{\dagger} a_{p'\sigma'} \right) | 0 \rangle \\
%
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma} \sum_{\sigma'} \sum_{\sigma''} C_{\alpha\sigma}^{*} C_{\alpha\sigma''} \sigma' \left( \delta_{pp'} \delta_{p'p''} \delta_{\sigma\sigma'} \delta_{\sigma'\sigma''} \right) | 0 \rangle \\
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma'} \sum_{\sigma} C_{\alpha\sigma}^{*} C_{\alpha\sigma'} \sigma' \left( \delta_{pp'} \delta_{p'p''} \delta_{\sigma\sigma'} \right) | 0 \rangle \\
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma'} C_{\alpha\sigma'}^{*} C_{\alpha\sigma'} \sigma' \left( \delta_{pp'} \delta_{p'p''} \right) | 0 \rangle \\
&= \left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right) \sum_{\sigma'} \left( C_{\alpha\sigma'}^{*} C_{\alpha\sigma'} \sigma' \right) | 0 \rangle \\
\end{align*}

The possible values for p are 1, 2, 3, and 4. The possible values of sigma are -1 and 1.

The final total answer should be

\begin{align*}
2 \epsilon \left( |C_{\alpha+}|^{2}-|C_{\alpha-}|^{2}\right)
\end{align*}

When I sum over sigma', I will get

\begin{align*}
|C_{\alpha+}|^{2}-|C_{\alpha-}|^{2}
\end{align*}

This means to get the answer I am supposed to get, everything that has to do with p, p', and p'' must equal 4. I have tried numerous times writing out explicitly with p,p',p'' = 1, 2, 3, 4 and end up with something that is very messy and that will not equal 4. I also tried moving the sums and products of the p's around, and that doesn't seem to help either.

Does anyone see what I am doing wrong?
 
Physics news on Phys.org
Rubiss said:
## \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##

The possible values for p are 1, 2, 3, and 4. The possible values of sigma are -1 and 1.

If p' must simultaneously equal p and p'', what can you say about p and p''?
 
They must be equal... I know that. I'm trying to be very explicit in all my steps though. So if the kronecker deltas say p=p'=p'', how does that affect the products?
 
## \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##

If p ≠ p'', then what is the value of ##\sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##

If you let ##a_{pp''} = \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##, then your expression is of the form ## \prod_{p} \prod_{p''} a_{pp''}##. This is a product of terms ##a_{pp''}##. If anyone of the ##a_{pp''}## is zero, what is the value of the overall expression?
 
TSny said:
## \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##

If p ≠ p'', then what is the value of ##\sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##

0

TSny said:
If you let ##a_{pp''} = \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)##, then your expression is of the form ## \prod_{p} \prod_{p''} a_{pp''}##. This is a product of terms ##a_{pp''}##. If anyone of the ##a_{pp''}## is zero, what is the value of the overall expression?

0. I'm still not seeing how I am going to get the value of 4 I need.

Let me show you what my problem is

\begin{align*}
\prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right)
&=\prod_{p} \prod_{p''} \left( \delta_{p1}\delta_{1p''} + \delta_{p2}\delta_{2p''} + \delta_{p3}\delta_{3p''} + \delta_{p4}\delta_{4p''} \right) \\
&= \prod_{p} \left( \delta_{p1}\delta_{11} + \delta_{p2}\delta_{21} + \delta_{p3}\delta_{31} + \delta_{p4}\delta_{41} \right)
\left( \delta_{p1}\delta_{12} + \delta_{p2}\delta_{22} + \delta_{p3}\delta_{32} + \delta_{p4}\delta_{42} \right)
\left( \delta_{p1}\delta_{13} + \delta_{p2}\delta_{23} + \delta_{p3}\delta_{33} + \delta_{p4}\delta_{43} \right)
\left( \delta_{p1}\delta_{14} + \delta_{p2}\delta_{24} + \delta_{p3}\delta_{34} + \delta_{p4}\delta_{44} \right) \\
&= \prod_{p} \left( \delta_{p1} \delta_{11} \right) \left( \delta_{p2} \delta_{22} \right) \left( \delta_{p3} \delta_{33} \right) \left( \delta_{p4} \delta_{44} \right) \\
&= \prod_{p} \left( \delta_{p1} \right) \left( \delta_{p2} \right) \left( \delta_{p3} \right) \left( \delta_{p4} \right) \\
&=0 \neq 4
\end{align*}

Sorry if I am not understanding you or am missing something that is totally obvious.
 
Yes, I agree that ## \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right) = 0.##

I don't understand how you justify reordering the products and summation when you wrote

##
\langle \Psi | H_{0} | \Psi \rangle =##

##\left[ \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) \right] \left[ \left( \frac{1}{2} \right) \epsilon \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right]= ##

##=\left( \frac{1}{2} \right) \epsilon \langle 0 | \prod_{p} \prod_{p''} \sum_{p'} \sum_{\sigma} \sum_{\sigma'} \sum_{\sigma''} C_{\alpha\sigma}^{*} C_{\alpha\sigma''} \sigma' a_{p\sigma} a^{\dagger}_{p'\sigma'} a_{p'\sigma'} a_{p''\sigma''}^{\dagger} | 0 \rangle ##

For example I think you can easily check that in general

##( \prod_{i=1}^2 \sum_{j=1}^2A_{ij})(\prod_{i\,'=1}^2 \sum_{j\,'=1}^2B_{i\,'j\,'}) \neq \prod_{i=1}^2\prod_{i\,'=1}^2\sum_{j=1}^2\sum_{j\,'=1}^2A_{ij}B_{i\,'j\'}##.
 
TSny said:
Yes, I agree that ## \prod_{p} \prod_{p''} \sum_{p'} \left( \delta_{pp'} \delta_{p'p''} \right) = 0.##

I don't understand how you justify reordering the products and summation when you wrote



For example I think you can easily check that in general

##( \prod_{i=1}^2 \sum_{j=1}^2A_{ij})(\prod_{i\,'=1}^2 \sum_{j\,'=1}^2B_{i\,'j\,'}) \neq \prod_{i=1}^2\prod_{i\,'=1}^2\sum_{j=1}^2\sum_{j\,'=1}^2A_{ij}B_{i\,'j\'}##.

Ok...if I write out the original order (product, sum, product), I will still get zero

\begin{align*}
\prod_{p}\sum_{p'}\prod_{p''}\delta_{pp'}\delta_{p'p''}
&=\prod_{p}\sum_{p'}\delta_{pp'}\delta_{p'1}\delta_{p'2}\delta_{p'3} \delta_{p'4} \\
&=\prod_{p}\left(\delta_{p1}\delta_{11}\delta_{12}\delta_{13}\delta_{14}+\delta_{p2}\delta_{21}\delta_{22}\delta_{23}\delta_{24}+\delta_{p3} \delta_{31}\delta_{32}\delta_{33}\delta_{34}+\delta_{p4}\delta_{41} \delta_{42}\delta_{43}\delta_{44} \right) \\
&= \prod_{p} \left(0 + 0 + 0 + 0 \right) \\
&= 0 \neq 4
\end{align*}

So something is still wrong...
 
I was able to get the result, but only by writing things out explicitly and assuming ##\small |C_{\alpha+}|^{2}+|C_{\alpha-}|^{2} = 1##.

Note that the expression
## \left[ \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) \right] \left[ \left( \frac{1}{2} \right) \epsilon \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right]##

has three main factors. The factor on the right is

##\left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right] = \left(C_{\alpha+} a_{1+}^{\dagger} + C_{\alpha-} a_{1-}^{\dagger} \right) \left(C_{\alpha+} a_{2+}^{\dagger} + C_{\alpha-} a_{2-}^{\dagger} \right) \left(C_{\alpha+} a_{3+}^{\dagger} + C_{\alpha-} a_{3-}^{\dagger} \right) \left(C_{\alpha+} a_{4+}^{\dagger} + C_{\alpha-} a_{4-}^{\dagger} \right)##

I found it convenient to let

##\left[1 \right] = \left(C_{\alpha+} a_{1+}^{\dagger} + C_{\alpha-} a_{1-}^{\dagger} \right) ## ##\;\;\; ## ##\left[2 \right] = \left(C_{\alpha+} a_{2+}^{\dagger} + C_{\alpha-} a_{2-}^{\dagger} \right) ## ##\;\;\;## etc.

so that

## \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle = [1][2][3][4] | 0 \rangle##

The middle main factor of the general expression contains

## \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) = \left( n_{1+}-n_{1-} \right) + \left( n_{2+}-n_{2-} \right) + \left( n_{3+}-n_{3-} \right) + \left( n_{4+}-n_{4-} \right) ##

where ##n_{1+} = a_{1+}^{\dagger}a_{1+}\;\;## etc.

You can show that ## \left( n_{1+}-n_{1-} \right) [1][2][3][4]| 0 \rangle = [\overline{1}][2][3][4]| 0 \rangle##, where ##[\overline{1}]= \left(C_{\alpha+} a_{1+}^{\dagger} - C_{\alpha-} a_{1-}^{\dagger} \right) ##

Then see if you can show

## \left[ \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle = \left( [\overline{1}][2][3][4] + [1][\overline{2}][3][4] + [1][2][\overline{3}][4] + [1][2][3][\overline{4}] \right) | 0 \rangle ##

Finally you can try to see what happens when you apply the final factor

## \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) = \langle 0 | \{1\}\{2\}\{3\}\{4\}## where ##\{1\} = \left(C_{\alpha+}^{*} a_{1+} + C_{\alpha-}^{*} a_{1-} \right) ## ##\;\;\;## etc.

Note that ##\{1\}[1]| 0 \rangle = \left(|C_{\alpha+}|^2 + |C_{\alpha-}|^2 \right) | 0 \rangle = | 0 \rangle## and ##\{1\}[\overline{1}] | 0 \rangle = \left(|C_{\alpha+}|^2 - |C_{\alpha-}|^2 \right) | 0 \rangle##

Sorry, I don't see an elegant, compact way using Kronecker deltas, etc. I get confused if I try to move around product and sum symbols.
 
TSny said:
I was able to get the result, but only by writing things out explicitly and assuming ##\small |C_{\alpha+}|^{2}+|C_{\alpha-}|^{2} = 1##.

Note that the expression
## \left[ \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) \right] \left[ \left( \frac{1}{2} \right) \epsilon \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right]##

has three main factors. The factor on the right is

##\left[ \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle \right] = \left(C_{\alpha+} a_{1+}^{\dagger} + C_{\alpha-} a_{1-}^{\dagger} \right) \left(C_{\alpha+} a_{2+}^{\dagger} + C_{\alpha-} a_{2-}^{\dagger} \right) \left(C_{\alpha+} a_{3+}^{\dagger} + C_{\alpha-} a_{3-}^{\dagger} \right) \left(C_{\alpha+} a_{4+}^{\dagger} + C_{\alpha-} a_{4-}^{\dagger} \right)##

I found it convenient to let

##\left[1 \right] = \left(C_{\alpha+} a_{1+}^{\dagger} + C_{\alpha-} a_{1-}^{\dagger} \right) ## ##\;\;\; ## ##\left[2 \right] = \left(C_{\alpha+} a_{2+}^{\dagger} + C_{\alpha-} a_{2-}^{\dagger} \right) ## ##\;\;\;## etc.

so that

## \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle = [1][2][3][4] | 0 \rangle##

The middle main factor of the general expression contains

## \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) = \left( n_{1+}-n_{1-} \right) + \left( n_{2+}-n_{2-} \right) + \left( n_{3+}-n_{3-} \right) + \left( n_{4+}-n_{4-} \right) ##

where ##n_{1+} = a_{1+}^{\dagger}a_{1+}\;\;## etc.

You can show that ## \left( n_{1+}-n_{1-} \right) [1][2][3][4]| 0 \rangle = [\overline{1}][2][3][4]| 0 \rangle##, where ##[\overline{1}]= \left(C_{\alpha+} a_{1+}^{\dagger} - C_{\alpha-} a_{1-}^{\dagger} \right) ##

Then see if you can show

## \left[ \sum_{p'} \sum_{\sigma'} \left( \sigma' a^{\dagger}_{p'\sigma'} a_{p'\sigma'} \right) \right] \prod_{p''} \sum_{\sigma''} \left( C_{\alpha\sigma''} a_{p''\sigma''}^{\dagger} \right) | 0 \rangle = \left( [\overline{1}][2][3][4] + [1][\overline{2}][3][4] + [1][2][\overline{3}][4] + [1][2][3][\overline{4}] \right) | 0 \rangle ##

Finally you can try to see what happens when you apply the final factor

## \langle 0 | \prod_{p} \sum_{\sigma} \left( C_{\alpha\sigma}^{*} a_{p\sigma} \right) = \langle 0 | \{1\}\{2\}\{3\}\{4\}## where ##\{1\} = \left(C_{\alpha+}^{*} a_{1+} + C_{\alpha-}^{*} a_{1-} \right) ## ##\;\;\;## etc.

Note that ##\{1\}[1]| 0 \rangle = \left(|C_{\alpha+}|^2 + |C_{\alpha-}|^2 \right) | 0 \rangle = | 0 \rangle## and ##\{1\}[\overline{1}] | 0 \rangle = \left(|C_{\alpha+}|^2 - |C_{\alpha-}|^2 \right) | 0 \rangle##

Sorry, I don't see an elegant, compact way using Kronecker deltas, etc. I get confused if I try to move around product and sum symbols.

Thanks for the reply! I will try to work through everything you have written. By the way, your assumption ##\small |C_{\alpha+}|^{2}+|C_{\alpha-}|^{2} = 1## is correct because the operators were constructed from a unitary transformation.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
5
Views
3K
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K