Raj's integration questions via Facebook

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

This discussion focuses on calculating the area enclosed between two sets of functions: the parabola \( y = 6 - x^2 \) and the line \( y = 3 - 2x \), and the semicircle \( y = \sqrt{4 - x^2} \) and the line \( x - y + 2 = 0 \). The area between the first pair is determined to be \( \frac{32}{3} \) square units, while the area between the second pair is \( \pi - 2 \) square units. The intersection points for both pairs of functions are calculated using algebraic methods, confirming the higher functions for area calculations. The discussion emphasizes the importance of showing step-by-step workings in mathematical solutions.

PREREQUISITES
  • Understanding of integral calculus, specifically area under curves
  • Familiarity with algebraic manipulation and solving equations
  • Knowledge of function graphs, including parabolas and semicircles
  • Ability to interpret and rewrite linear equations
NEXT STEPS
  • Study the Fundamental Theorem of Calculus for area calculations
  • Learn how to find intersection points of functions graphically and algebraically
  • Explore applications of definite integrals in real-world scenarios
  • Practice solving similar problems involving area between curves
USEFUL FOR

Students, educators, and anyone interested in mastering calculus concepts, particularly those focused on finding areas between curves and understanding integral calculus applications.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
1. Find the area enclosed between $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ and $\displaystyle \begin{align*} y = 3 - 2\,x \end{align*}$.

2. Find the area enclosed between $\displaystyle \begin{align*} y = \sqrt{4 - x^2} \end{align*}$ and the line $\displaystyle \begin{align*} x - y + 2 = 0 \end{align*}$.

1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
 
Physics news on Phys.org
Prove It said:
1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
Your steps are correct! In addition to this i would always require my students to show step-step working to solution...in general they ought to start with formula for finding Area bound by given functions i.e ##A=\int_a^b f(x) dx## ...before plugging in the values.
 
  • Like
Likes   Reactions: Greg Bernhardt

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K