MHB Raj's integration questions via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The discussion focuses on finding the areas enclosed by two pairs of functions. The first area, between the curves y = 6 - x² and y = 3 - 2x, is calculated to be 32/3 square units. The second area, between the semicircle y = √(4 - x²) and the line y = x + 2, results in an area of (π - 2) square units. The importance of showing step-by-step calculations is emphasized for educational purposes. Overall, the thread highlights the methods for determining areas between curves using integration.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
1. Find the area enclosed between $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ and $\displaystyle \begin{align*} y = 3 - 2\,x \end{align*}$.

2. Find the area enclosed between $\displaystyle \begin{align*} y = \sqrt{4 - x^2} \end{align*}$ and the line $\displaystyle \begin{align*} x - y + 2 = 0 \end{align*}$.

1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
Your steps are correct! In addition to this i would always require my students to show step-step working to solution...in general they ought to start with formula for finding Area bound by given functions i.e ##A=\int_a^b f(x) dx## ...before plugging in the values.
 
  • Like
Likes Greg Bernhardt
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K