MHB Raj's integration questions via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Integration
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
1. Find the area enclosed between $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ and $\displaystyle \begin{align*} y = 3 - 2\,x \end{align*}$.

2. Find the area enclosed between $\displaystyle \begin{align*} y = \sqrt{4 - x^2} \end{align*}$ and the line $\displaystyle \begin{align*} x - y + 2 = 0 \end{align*}$.

1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
1. The graphs intersect where the functions are equal, so

$\displaystyle \begin{align*} 6 - x^2 &= 3 - 2\,x \\ 0 &= x^2 - 2\,x - 3 \\ 0 &= \left( x - 3 \right) \left( x + 1 \right) \\ x &= 3 \textrm{ or } x = -1 \end{align*}$

The higher function is $\displaystyle \begin{align*} y = 6 - x^2 \end{align*}$ (check with a graph if you like), so the area is

$\displaystyle \begin{align*} A &= \int_{-1}^3{ \left[ \left( 6 - x^2 \right) - \left( 3 - 2\,x \right) \right] \,\mathrm{d}x } \\ &= \int_{-1}^3{ \left( 3 + 2\,x - x^2 \right) \,\mathrm{d}x } \\ &= \left[ 3\,x + x^2 - \frac{x^3}{3} \right] _{-1}^3 \\ &= \left[ 3 \left( 3 \right) + 3^2 - \frac{3^3}{3} \right] - \left[ 3\left( -1 \right) + \left( -1 \right) ^2 - \frac{ \left( -1 \right) ^3}{3} \right] \\ &= 9 - \left( -3 + 1 + \frac{1}{3} \right) \\ &= 9 - \left( -2 + \frac{1}{3} \right) \\ &= 9 - \left( -\frac{5}{3} \right) \\ &= \frac{27}{3} + \frac{5}{3} \\ &= \frac{32}{3} \,\textrm{units}^2 \end{align*}$2. The graphs intersect where the functions are equal, and the second can be rewritten as $\displaystyle \begin{align*} y = x + 2 \end{align*}$ so

$\displaystyle \begin{align*} \sqrt{4 - x^2} &= x + 2 \\ 4 - x^2 &= \left( x + 2 \right) ^2 \\ 4 - x^2 &= x^2 + 4\,x + 4 \\ 0 &= 2\,x^2 + 4\,x \\ 0 &= 2\,x \left( x + 2 \right) \\ x &= 0 \textrm{ or } x = -2 \end{align*}$

The top function is a semicircle centred at the origin of radius 2 units. The line cuts off the right angle triangle with base and height of 2 units. So the area we want is

$\displaystyle \begin{align*} A &= \frac{\pi \cdot 2^2}{4} - \frac{2 \cdot 2}{2} \\ &= \left( \pi - 2 \right) \,\textrm{units}^2 \end{align*}$
Your steps are correct! In addition to this i would always require my students to show step-step working to solution...in general they ought to start with formula for finding Area bound by given functions i.e ##A=\int_a^b f(x) dx## ...before plugging in the values.
 
  • Like
Likes Greg Bernhardt
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
11K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
1
Views
11K
Replies
1
Views
5K
Replies
2
Views
11K
Back
Top