Rationalizing this fraction involving square roots

Click For Summary
The discussion revolves around simplifying the fraction involving square roots, specifically the expression (√5 + √3)(√5 + √2) / (√5 + √3 + √2). One participant describes using brute force by multiplying the numerator and denominator by (√5 + √3 - √2) to rationalize the denominator. Another contributor suggests that this method may be cumbersome and proposes an alternative approach involving algebraic manipulation. Ultimately, the conversation highlights the complexity of rationalizing such expressions while seeking more efficient methods. The participants appreciate the insights shared during the discussion.
songoku
Messages
2,505
Reaction score
402
Homework Statement
Simplify:

$$\frac{\left( \sqrt{5}+\sqrt{3} \right) \left(\sqrt{5} + \sqrt{2} \right)}{\sqrt{5} + \sqrt{3} + \sqrt{2}}$$
Relevant Equations
Rationalization
I can do the question using brute force. First I multiply both the numerator and denominator by ##\sqrt{5} + \sqrt{3} - \sqrt{2}## then I simplify everything and rationalize again until no more square root in the denominator.

I want to ask if there is a trick to reduce the monstrous calculation

Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement:: Simplify:

$$\frac{\left( \sqrt{5}+\sqrt{3} \right) \left(\sqrt{5} + \sqrt{2} \right)}{\sqrt{5} + \sqrt{3} + \sqrt{2}}$$
Relevant Equations:: Rationalization

I can do the question using brute force. First I multiply both the numerator and denominator by ##\sqrt{5} + \sqrt{3} - \sqrt{2}## then I simplify everything and rationalize again until no more square root in the denominator.

I want to ask if there is a trick to reduce the monstrous calculation

Thanks
I believe you are stuck with that method. The alternate is probably even worse:
##( \sqrt{5} + \sqrt{3} + \sqrt{2} ) ( - \sqrt{5} + \sqrt{3} + \sqrt{2} ) ( \sqrt{5} - \sqrt{3} + \sqrt{2} ) ( \sqrt{5} + \sqrt{3} - \sqrt{2} ) = 24##

-Dan
 
  • Like
Likes songoku and PeroK
If ##c = a - b##, then:
$$(\sqrt a + \sqrt b+ \sqrt c)^2 = 2(a + \sqrt{ab} + (\sqrt a + \sqrt b)\sqrt c) =2(\sqrt a + \sqrt b)(\sqrt a + \sqrt c)$$Hence:
$$\frac{(\sqrt a + \sqrt b)(\sqrt a + \sqrt c)}{\sqrt a + \sqrt b+ \sqrt c} = \frac{\sqrt a + \sqrt b+ \sqrt c}{2}$$
 
  • Like
  • Wow
Likes songoku, Steve4Physics and topsquark
Thank you very much for the help and explanation topsquark, PeroK
 
The working out suggests first equating ## \sqrt{i} = x + iy ## and suggests that squaring and equating real and imaginary parts of both sides results in ## \sqrt{i} = \pm (1+i)/ \sqrt{2} ## Squaring both sides results in: $$ i = (x + iy)^2 $$ $$ i = x^2 + 2ixy -y^2 $$ equating real parts gives $$ x^2 - y^2 = 0 $$ $$ (x+y)(x-y) = 0 $$ $$ x = \pm y $$ equating imaginary parts gives: $$ i = 2ixy $$ $$ 2xy = 1 $$ I'm not really sure how to proceed from here.

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K