Re: How do I find the potential for this unusual pendulum?

Click For Summary
SUMMARY

The potential energy of an unusual pendulum, consisting of a mass $m$ tied to a string wrapped around a cylinder of radius $R$, is derived based on its swing angle $\phi$ from the vertical. The potential energy formula is established as $$U=mg\left[l_{0}+R \sin( \phi)-(l_{0}+ \phi R) \cos( \phi)\right]$$, where $l_{0}$ is the vertical distance from the cylinder's edge to the mass in equilibrium. The analysis incorporates the changing length of the pendulum as the mass swings, affecting the gravitational potential energy calculation.

PREREQUISITES
  • Understanding of gravitational potential energy and its formula, $U=mgh$.
  • Familiarity with trigonometric functions and their application in physics.
  • Knowledge of vector representation in two-dimensional space.
  • Basic principles of pendulum motion and dynamics.
NEXT STEPS
  • Explore the derivation of potential energy in non-linear systems.
  • Study the effects of angular displacement on pendulum dynamics.
  • Learn about the conservation of energy in mechanical systems.
  • Investigate the application of Lagrangian mechanics to complex pendulum systems.
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in advanced pendulum dynamics and potential energy calculations.

Dustinsfl
Messages
2,217
Reaction score
5
An unusual pendulum is made by fixing a string to a horizontal cylinder of radius $R$, wrapping the string several times around the cylinder, and then tying a mass $m$ to the loose end.
In equilibrium the mass hangs a distance $l_0$ vertically below the edge of the cylinder.
Find the potential energy if the pendulum has swung to an angle $\phi$ from the vertical.

The definition for potential energy is
$$
U(\mathbf{r}) = -W(\mathbf{r}_0\to\mathbf{r}) = -\int_{\mathbf{r}_0}^{\mathbf{r}}\mathbf{F}(\mathbf{r}')\cdot d\mathbf{r}'
$$
How do I find the potential for this unusual pendulum?
 
Physics news on Phys.org
Re: potential energy

Actually, $W=-\Delta U$. Absolute potential energy has no physical meaning, only a change in potential energy. The only forces on the mass are gravity and the tension in the string. The trick with this problem is that when the mass swings, the cylinder is either taking up more string, or releasing string. So the length of the pendulum is changing.

Let us define $y$ positive up, $x$ positive to the right, and $\phi$ positive in the counter-clockwise direction from the $+x$ axis, as usual. Let us assume that the cylinder's center is at the origin, and that the string is hanging in equilibrium from a point of tangency that is on the positive $x$ axis.

Several key concepts here: the potential energy due to the gravitational force is given by $mgh$, where $h$ is the height above some zero point for the energy. When the mass swings, the string is always tangent to the cylinder, and hence the angle $\phi$ that the pendulum has swung is also the angle $\phi$ which the string has either wrapped more around the cylinder or less. Therefore, the arc length of additional string taken up is given by $s=\phi R$. So the length of the pendulum is always $l_{0}+s$. If we can find the point of tangency as a function of $\phi$, and then go $l_{0}+s$ along the string, we'd arrive at the mass.

Then the vector to the point of tangency $P_{t}$ we can write as
$$\mathbf{P}_{t}=R \, \langle \cos( \phi), \sin( \phi) \rangle.$$
From the point of tangency, the mass is then located a distance $l_{0}+ \phi R$ away, at an angle of $\phi$ from the vertical. Hence, the vector $\mathbf{r}$ from the point of tangency to the mass is given by
$$\mathbf{r}=(l_{0}+ \phi R) \, \langle \sin( \phi), -\cos( \phi)\rangle.$$
The minus sign on the $y$ component reflects the fact that we've defined $y$ positive down. Hence, for any angle $\phi$, the $y$-coordinate of the mass is given by the sum of the $y$ components of these two vectors, or
$$y=R \sin(\phi)-(l_{0}+ \phi R) \cos( \phi).$$

We can just define our zero point to be when $\phi=0$, in which case $y=-l_{0}$. Therefore, the height $h$ in the formula $U=mgh$ is given by $U=mg(l_{0}+y)$, since
$l_{0}>0$ and $y<0$. Therefore, the potential energy is
$$U=mg\left[l_{0}+R \sin( \phi)-(l_{0}+ \phi R) \cos( \phi)\right].$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K