Reaction time while stopping a car

  • #1
236
21

Homework Statement


To stop a car, first you require a certain reaction time to begin braking; then the car slows down under constant breaking decelaration. Suppose that the total distance moved by the car during these two phases is 56.7 m when its initial speed was 80.5 km/h and 24.4 m when its initial speed 48.3 km/h. What are
(a) The reaction time
(b) Magnitude of decelaration

2. Homework Equations

The Kinematical Equations

The Attempt at a Solution


Actually, my guess of what they're asking is the time between pressing the brake pedal and the brake pads squeezing in on the tyres.
So let to be the reaction time and a be the constant breaking decelaration.
u1 = 80.5 km/h = 22.36 m/s
u2 = 48.3 km/h = 13.42 m/s
Now, I thought of using s = ut + (1/2)at2, get two equations and solve them, but I have one basic question.
In the time interval I think they're asking, the car isn't decelarating. It starts decelarating after the brake pads squeeze in on the tyres. So how can I substitute to & a in the same equation?
 

Answers and Replies

  • #2
Doc Al
Mentor
45,033
1,335
Treat the "reaction time" period as having constant velocity. (The acceleration hasn't begun yet.) After the brakes are applied (and engaged), treat it as having constant acceleration.
 
  • #3
236
21
56.7 = (22.36)(t + to) - (1/2)a(t2)
24.4 = (13.42)(t + to) - (1/2)a(t2)

Assuming t is the braking time and to is the reaction time.
3 variables, 2 equations...
 
  • #4
Doc Al
Mentor
45,033
1,335
56.7 = (22.36)(t + to) - (1/2)a(t2)
24.4 = (13.42)(t + to) - (1/2)a(t2)

3 variables, 2 equations...
Assuming t is the braking time and to is the reaction time.
Treat the motion as having two phases. For the accelerated phase, use a different kinematic formula that doesn't call for t.
 
  • #5
236
21
For the accelerated phase, use a different kinematic formula that doesn't call for t.
There's only v2 = u2 - 2as. But v will be zero in each case. So I will have two inconsistent values of a.
 
  • #6
Ray Vickson
Science Advisor
Homework Helper
Dearly Missed
10,706
1,728

Homework Statement


To stop a car, first you require a certain reaction time to begin braking; then the car slows down under constant breaking decelaration. Suppose that the total distance moved by the car during these two phases is 56.7 m when its initial speed was 80.5 km/h and 24.4 m when its initial speed 48.3 km/h. What are
(a) The reaction time
(b) Magnitude of decelaration

2. Homework Equations

The Kinematical Equations

The Attempt at a Solution


Actually, my guess of what they're asking is the time between pressing the brake pedal and the brake pads squeezing in on the tyres.
So let to be the reaction time and a be the constant breaking decelaration.
u1 = 80.5 km/h = 22.36 m/s
u2 = 48.3 km/h = 13.42 m/s
Now, I thought of using s = ut + (1/2)at2, get two equations and solve them, but I have one basic question.
In the time interval I think they're asking, the car isn't decelerating. It starts decelerating after the brake pads squeeze in on the tyres. So how can I substitute to & a in the same equation?
In this problem, "reaction time" is a sum: the time it takes for the foot to rise from the car floor to the brake pedal, plus the time needed to depress the pedal, plus the time you mentioned above. The assumption is that the total time for all of those effects is not affected by the initial speed, and that the deceleration itself is likewise independent of the initial speed. (That last one seems suspicious to me, as it assumes we push equally hard on the brake pedal whether we are slowing down in a controlled way before a red light or whether we are desperately trying to avoid a rear-end collision.)
 
  • #7
Doc Al
Mentor
45,033
1,335
There's only v2 = u2 - 2as. But v will be zero in each case. So I will have two inconsistent values of a.
The final velocity is zero, of course. But the initial velocity and distance will be different in each case.
 
  • #8
236
21
(That last one seems suspicious to me, as it assumes we push equally hard on the brake pedal whether we are slowing down in a controlled way before a red light or whether we are desperately trying to avoid a rear-end collision.)
Yeah, that's quite ambiguous
 
  • #9
Doc Al
Mentor
45,033
1,335
@Ray Vickson is correct. But ignore those real-life details (:wink:) and solve the idealized problem: Treat the reaction time and acceleration as constants to be determined.
 
  • #10
236
21
The final velocity is zero, of course. But the initial velocity and distance will be different in each case.
So, you mean a formula with distance, decelaration and initial velocity that doesn't include braking time but includes the reaction time? Then, I don't get what you're trying to say?
 
  • #11
Doc Al
Mentor
45,033
1,335
So, you mean a formula with distance, decelaration and initial velocity that doesn't include braking time but includes the reaction time? Then, I don't get what you're trying to say?
Don't try to jam it into one equation. (At least not at first.)

Phase 1: Constant speed for reaction time (Distance = D1)
Phase 2: You have the correct formula, which has distance, acceleration, and velocity (Distance = D2)

(You are given the total distance, D1 + D2.)
 
  • #12
236
21
You are given the total distance, D1 + D2.
The equations in #3 do incorporate D1 + D2. That's why there's t + to in the first term but only t2 in the second.
By the way, if you subtract Eq. 1 and 2, you can obtain total time T, which comes out to be 3.61 s. Maybe we could use that.
 
  • #13
Doc Al
Mentor
45,033
1,335
The equations in #3 do incorporate D1 + D2. That's why there's t + to in the first term but only t2 in the second
I would skip those equations and use one that doesn't require t, which is an unknown. Like you had in #5.
 
  • #14
236
21
I'm thinking of substitutimg t = u/a in Eq. 1 & 2, but that t + to term complicates it.
 
  • #15
Doc Al
Mentor
45,033
1,335
I'm thinking of substitutimg t = u/a in Eq. 1 & 2, but that t + to term complicates it.
Once again, why not just use the equation relating distance, acceleration, and speed? Then you won't have to go through the pain of eliminating the unnecessary time unknown.
 
  • #16
236
21
But, that won't render anything... v is zero in both cases. I'll get 2 inconsistent values of a
 
  • #17
Doc Al
Mentor
45,033
1,335
But, that won't render anything... v is zero in both cases. I'll get 2 inconsistent values of a
The final velocity is zero! So what? You still have the initial velocity!
 
  • #18
236
21
The final velocity is zero! So what? You still have the initial velocity!
u12 = 2as1
u22 = 2as2
If you substitute the given values, you get 2 different values of a.
 
  • #19
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
##0 = u^2 - 2as## is valid only in the case of constant acceleration. This is only one of the phases of each of the situations. You are completely missing the reaction phase by just plugging the values into this equation.
 
  • Like
Likes baldbrain
  • #20
Doc Al
Mentor
45,033
1,335
u12 = 2as1
u22 = 2as2
If you substitute the given values, you get 2 different values of a.
That equation is only for the 2nd phase of the motion. Don't neglect the first phase. (The distance in that equation is not the total distance that was given in the problem statement.)
 
  • Like
Likes baldbrain
  • #21
236
21
I'm still stuck at t + to. If only we could substitute t= u/a in t2 and that t in t + to would just magically vanish...
 
  • #22
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
16,829
6,652
Things do not happen by magic in physics, they happen by logical reasoning given the assumed situation. You need to express the ##s## that should go into the equations in terms of the reaction time ##t_0## and the initial velocity ##v_i## and the total stopping distance ##s_0##. Once you have done that, you will have two equations with two unknowns (##t_0## and ##a##) which is a perfectly solvable system.
 
  • #23
236
21
##0 = u^2 - 2as## is valid only in the case of constant acceleration. This is only one of the phases of each of the situations. You are completely missing the reaction phase by just plugging the values into this equation.
You need to express the ##s## that should go into the equations in terms of the reaction time ##t_0## and the initial velocity ##v_i## and the total stopping distance ##s_0##. Once you have done that, you will have two equations with two unknowns (##t_0## and ##a##) which is a perfectly solvable system.
That equation is only for the 2nd phase of the motion. Don't neglect the first phase. (The distance in that equation is not the total distance that was given in the problem statement.)
Yes, I get what you're saying mow. I was being an ass...
56.7 m = d11 + d12
= u1to + u12/2a
24.4 m = d21 + d22
= u2to + u22/2a
 
  • #24
236
21
I'm getting to = 0.74 s and a = 6.23 m/s2.
 
  • #25
236
21
Thank you all. And apologies for behaving rather idiotically
 

Related Threads on Reaction time while stopping a car

  • Last Post
Replies
8
Views
973
  • Last Post
Replies
4
Views
2K
Replies
14
Views
611
Replies
6
Views
5K
Replies
2
Views
1K
Replies
4
Views
9K
Replies
1
Views
558
Replies
3
Views
8K
Replies
3
Views
12K
Top