Real part of this complex quantity

  • #1
Hi everyone,

I have a dispersive wave packet of the form:
##\frac{1}{\sqrt{D^2 + 2i \frac{ct}{k_0}}} e^{-y^2/(D^2+2i\frac{ct}{k_0})}##
The textbook says that the enlargement of the package, on the y direction, is:
##L=\frac{1}{D}\sqrt{D^4+4\left(\frac{ct}{k_0}\right)^2} ##
However I have some problems extracting the real part; I write:
##\frac{1}{\sqrt{D^2 + 2i \frac{ct}{k_0}}} = \frac{\sqrt{D^2 - 2i \frac{ct}{k_0}}}{\sqrt{D^4+4\left(\frac{ct}{k_0}\right)^2}}##
And I use the fact that:
##\Re{\sqrt{a+bi}}=\sqrt{\frac{a \pm \sqrt{a^2 + b^2}}{2}} ##
But I can't find the correct expression.

Do you have any suggestion?

Thank you very much
 

Answers and Replies

  • #2
I don't know what you've tried. However the exponential has to be broken down into real and imaginary parts. Then combine the real parts to get one term of the real part of the product and combine the imaginary parts to get the other term.
 
  • #3
Try letting u(y)= the wave packet
Form the probability density abs(u^2) = u u*
You should be able to read the dispersion characteristics from there
 
  • #4
If I understand your problem is something like : find ##\delta \in \mathbb{Z}## such that ##\delta^2 = z##, ##z\in \mathbb{Z}##

Assume ##\delta = x + iy ## and ## z = X + i Y = \frac{D^2 \frac{ct}{k_0}}{D^4+4\left(\frac{ct}{k_0}\right)^2} + i \frac{ -2 \frac{ct}{k_0}}{D^4+4\left(\frac{ct}{k_0}\right)^2}##.

You must solve the system of equation:

## X = x^2 - y^2 ##
## Y = 2xy ##
## \sqrt{ X^2 + Y^2 } = x^2 + y^2##
 

Suggested for: Real part of this complex quantity

Replies
7
Views
379
Replies
2
Views
108
Replies
7
Views
698
Replies
8
Views
404
Replies
13
Views
425
Replies
38
Views
2K
Replies
13
Views
984
Replies
1
Views
544
Replies
2
Views
537
Replies
9
Views
643
Back
Top