MHB Realguy's question at Yahoo Answers regarding a Riemann sum

AI Thread Summary
The discussion focuses on using the limit process to find the area between the function f(x) = 4 - x² and the x-axis over the interval [-2, 2]. It highlights that since the function is even, the area can be calculated over [0, 2] and then doubled. The area is approximated using a left Riemann sum, leading to a formula for the total area that incorporates summation formulas for n subdivisions. The final limit as n approaches infinity reveals that the exact area is 32/3. This method effectively demonstrates the application of Riemann sums in calculating areas under curves.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Using limit process to solve?


Use the limit process to find the area of the region between the function: f(x) = 4 – x2
And the x-axis over the interval [-2, 2]

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello realguy,

If we observe that the given function is even, then we may find the area on the interval $[0,2]$ and then double the result to get the answer. We will divide this interval into $n$ equal subdivisions and use a left sum. The area of the $k$th rectangle is:

$$A_k=\frac{2-0}{n}\left(4-x_k^2 \right)$$

where $$0\le k\le n-1\in\mathbb{Z}$$ and $$x_k=\frac{2k}{n}$$.

Hence:

$$A_k=\frac{2}{n}\left(4-\left(\frac{2k}{n} \right)^2 \right)=\frac{8}{n^3}\left(n^2-k^2 \right)$$

Thus, the total area is approximated by (recall we need to double the sum):

$$A_n=2\left(\frac{8}{n^3}\sum_{k=0}^{n-1}\left(n^2-k^2 \right) \right)=\frac{16}{n^3}\sum_{k=0}^{n-1}\left(n^2-k^2 \right)$$

Using the formulas:

$$\sum_{k=0}^{n-1}(1)=n$$

$$\sum_{k=0}^{n-1}\left(k^2 \right)=\frac{n(n-1)(2n-1)}{6}$$

We obtain then:

$$A_n=\frac{16}{n^3}\left(n^3-\frac{n(n-1)(2n-1)}{6} \right)=\frac{16}{n^3}\cdot\frac{4n^3+3n^2-n}{6}=\frac{32n^2+24n-8}{3n^2}$$

A form which is more easily evaluated as a limit to infinity is:

$$A_n=\frac{32}{3}+\frac{8}{n}-\frac{8}{3n^2}$$

And so the exact area is given by:

$$A=\lim_{n\to\infty}A_n=\frac{32}{3}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top