I Recast of a conformal line element

  • Thread starter Thread starter silverwhale
  • Start date Start date
Click For Summary
The discussion centers on the transformation of the line element in quantum field theory as presented in Birrell and Davies. The original line element is given as ds² = dt² - a(t)² dx², with a(t) as a conformal factor. A participant questions the validity of rewriting this as ds² = a(η)² (dη² - dx²), arguing that the dependence of a on t complicates the transformation. The conversation highlights the confusion around the change of variables from t to η and the implications for the conformal factor, with participants emphasizing that a(t) and a(η) represent different functions. Ultimately, the discussion reveals a deeper inquiry into the nature of conformal mappings and variable dependencies in the context of quantum field theory.
silverwhale
Messages
78
Reaction score
2
TL;DR
In Birrell an dDavies QFT on CS a rewrite of a conformal line element is done. But this recasting seems to me not to be correct.
Hello PhysicsForums-Readers,

On page 59 of Birrells and Davies QFT on CS, the line element ##ds^2 = dt^2 - a(t)^2 dx^2##, where ##a(t)## is some conformal factor defined as ##a({\eta}) = dt/d{\eta}##.
Then in 3.83 the equation is rewritten to ##ds^2 = a(\eta)^2 (d^2 \eta - dx^2)##. IMHO this cannot be true.
But how can the author recast eqaution 3.81 (mentioned above) to this one? maybe because the map is a conformal map??

Can anyone enlighten me on this rewrite? Thank you!
Silverwhale
 
Physics news on Phys.org
silverwhale said:
On page 59 of Birrells and Davies QFT on CS, the line element ##ds^2 = dt^2 - a(t)^2 dx^2##, where ##a(t)## is some conformal factor defined as ##a({\eta}) = dt/d{\eta}##.
No, ##\eta## is defined by this relation.
silverwhale said:
Then in 3.83 the equation is rewritten to ##ds^2 = a(\eta)^2 (d^2 \eta - dx^2)##. IMHO this cannot be true.
You just make a change of variables, instead of ##t## use ##\eta##. Substituting ##dt = a(\eta)d\eta## in the first equation, gives you this.
 
martinbn said:
No, ##\eta## is defined by this relation.

You just make a change of variables, instead of ##t## use ##\eta##. Substituting ##dt = a(\eta)d\eta## in the first equation, gives you this.
Thank you martinbn for your answer.

In page 59, the definition is ##d \eta = dt/a##, that I do know; from which ##a(\eta) * d\eta = dt## follows (which I wrote), right?

Before I start explaining my problem (I hope this time better), We should not forget that the factor ##a(t)## depends on the variable ##t## as does ##dt^2##.

Now, If we change the variable ##t## by ##\eta## in the line element, then we should get: $$ds^2 = d\eta^2 - a^2(\eta) dx^2.$$
That is not 3.83..

Next, If we subsitute in 3.81 ##dt## by ## a(\eta) d\eta##, then $$ ds^2 = a^2(\eta) d\eta^2 - a^2(t) dx^2.$$ the problematic factor ##a^2(t)## still appears.

Last, if we take each term by itself in 3.81 and make a change of variables just in the second term, and substitute in the first, then yes we get 3.83, but that contradicts IMHO the definition 3.81 of the conformal line element ##ds^2## where ##a(t)## changes, when ##dt## changes in the coordinate axis..
Finally, saying ##a(t)## is the same as ##a(\eta)## does not make sense to me as ##a## should note the same map..
Silverwhale
 
No, i am not saying replace the letter ##t## with the letter ##\eta##, that would be usleless. The relation ##d\eta=\frac{dt}a## gives you, if you integrate it, each of the ##t## and ##\eta## as a function of the other, say ##t=f(\eta)##. Then you make this change of variables. You keep the ##x## and you change ##t## to ##\eta## using ##t=f(\eta)##.
 
Yes, I do get your point.
But then, I get ##a(f(\eta))## which ist not equivalent (as a function) to ## a(\eta)## That is my problem. Both are called ##a##, but they are two different functions..
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...

Similar threads

  • · Replies 5 ·
Replies
5
Views
890
  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
60
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
32
Views
3K
Replies
11
Views
1K
  • · Replies 18 ·
Replies
18
Views
4K