Reciprocal Vectors: Representing $\mathbf{u}_i$ in Indicial Notation

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Reciprocal Vectors
Click For Summary

Discussion Overview

The discussion revolves around representing vectors in indicial notation, specifically focusing on the reciprocal basis formed by the vectors $\mathbf{u}_1$, $\mathbf{u}_2$, and $\mathbf{u}_3$. Participants explore the mathematical representation of these vectors, the conditions for establishing a reciprocal basis, and the calculations involved in verifying these conditions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant questions how to represent the vectors $\mathbf{u}_i$ in indicial notation, suggesting that using $u_i$ may not be appropriate due to the labeling of the components.
  • Another participant proposes that $\mathbf{u}_i$ can be expressed as $u_{ij}$ and suggests viewing a basis as a matrix of basis vectors.
  • Several participants point out potential typos in the formulation of the reciprocal vectors, specifically regarding the indices used in the cross products.
  • A participant discusses the process of verifying the condition $\mathbf{u}_1 \cdot \mathbf{u}^j = \delta_{1j}$ and raises a question about performing vector division in this context.
  • Another participant clarifies that the cross product in the numerator is a vector while the dot product in the denominator is a scalar, emphasizing the need to perform a dot product first before division.
  • One participant expresses uncertainty about demonstrating that the numerator becomes zero, speculating on the relationship between the indices of the basis vectors.
  • A later reply confirms that the cross product of $\mathbf{u}_2$ and $\mathbf{u}_3$ is indeed perpendicular to $\mathbf{u}_2$, leading to a zero dot product, and provides an index-based explanation for this result.

Areas of Agreement / Disagreement

Participants express differing views on the correct formulation of the reciprocal vectors and the appropriate representation of the vectors in indicial notation. There is no consensus on the resolution of these issues, and the discussion remains unresolved.

Contextual Notes

Participants note potential typos in the indices of the reciprocal vectors and the implications of these errors for the calculations. The discussion also highlights the complexity of vector operations and the need for careful attention to notation and definitions.

Dustinsfl
Messages
2,217
Reaction score
5
How do I even represent the u's in indicial notation since the u's are labeled 1,2,3? I can't have components 1,2,3 and say u is $u_i$.

With respect to the triad of base vectors $\mathbf{u}_1$, $\mathbf{u}_2$, and $\mathbf{u}_3$ (not necessary unit vectors), the triad $\mathbf{u}^1$, $\mathbf{u}^2$, and $\mathbf{u}^3$ is said to be the reciprocal basis if $\mathbf{u}_i\cdot\mathbf{u}^j = \delta_{ij}$.
Show that to satisfy these conditions
$$
\mathbf{u}^1 = \frac{\mathbf{u}_3\times\mathbf{u}_1}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]};\quad
\mathbf{u}^2 = \frac{\mathbf{u}_2\times\mathbf{u}_3}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]};\quad
\mathbf{u}^3 = \frac{\mathbf{u}_1\times\mathbf{u}_2}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]}
$$
and determine the reciprocal basis for the specific base vectors
\begin{alignat*}{3}
\mathbf{u}_1 & = & 2\hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2,\\
\mathbf{u}_2 & = & 2\hat{\mathbf{e}}_2 - \hat{\mathbf{e}}_3,\\
\mathbf{u}_3 & = & \hat{\mathbf{e}}_1 + \hat{\mathbf{e}}_2 + \hat{\mathbf{e}}_3
\end{alignat*}
 
Physics news on Phys.org
You can write $\mathbf u_i$ for instance as $u_{ij}$.
A basis can be seen as just a matrix containing the basis vectors.

You appear to have a couple of typos in your problem.
The numerators of the first two reciprocal vectors have the wrong indices.

To verify, consider that the two vectors in a cross product are both perpendicular to the resulting vector.
That should make it easy to calculate each of the dot products.
 
Last edited:
ILikeSerena said:
You can write $\mathbf u_i$ for instance as $u_{ij}$.
A basis can be seen as just a matrix containing the basis vectors.

You appear to have a couple of typos in your problem.
The numerators of the first two reciprocal vectors have the wrong indices.

To verify, consider that the two vectors in a cross product are both perpendicular to the resulting vector.
That should make it easy to calculate each of the dot products.
$$
\mathbf{u}^1 = \frac{\mathbf{u}_2\times\mathbf{u}_3}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]};\quad
\mathbf{u}^2 = \frac{\mathbf{u}_3\times\mathbf{u}_1}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]};\quad
\mathbf{u}^3 = \frac{\mathbf{u}_1\times\mathbf{u}_2}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]}
$$
 
All I have to do is show that $\mathbf{u}_1\cdot \mathbf{u}^j = \delta_{1j}$ where j = 1,2,3.
How do I do vector division?
\begin{alignat}{3}
\frac{\mathbf{u}_2\times\mathbf{u}_3}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]}\cdot \mathbf{u}_1 & = & \frac{\mathbf{u}_2\times\mathbf{u}_3}{\mathbf{u}_1 \cdot(\mathbf{u}_2 \times\mathbf{u}_3)}\cdot \mathbf{u}_1\\
& = & \frac{\mathbf{u}_1}{\mathbf{u_1}}\\
& = & 1\\
\frac{\mathbf{u}_2\times\mathbf{u}_3}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]}\cdot \mathbf{u}_2 & = & \frac{\mathbf{u}_2\times\mathbf{u}_3}{\mathbf{u}_1 \cdot(\mathbf{u}_2 \times\mathbf{u}_3)}\cdot \mathbf{u}_2\\
& = & \frac{\mathbf{u}_2}{\mathbf{u_1}}\\
& = & ?
\end{alignat}
 
The cross product in the numerator is a vector.
The dot product in the denominator is a scalar.

You are supposed to do a dot product of $\mathbf u_1$ with the nominator, and afterward divide by the scalar denominator.

Btw, the dot product in the denominator represent the volume of the parallellepipedum between the 3 basis vectors.
It is symmetric in each cyclic combination of the basis vectors.
 
ILikeSerena said:
The cross product in the numerator is a vector.
The dot product in the denominator is a scalar.

You are supposed to do a dot product of $\mathbf u_1$ with the nominator, and afterward divide by the scalar denominator.

Btw, the dot product in the denominator represent the volume of the parallellepipedum between the 3 basis vectors.
It is symmetric in each cyclic combination of the basis vectors.
\begin{alignat}{3}
\frac{\mathbf{u}_2\times\mathbf{u}_3}{[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3]} \cdot\mathbf{u}_2 & = & \frac{\mathbf{u}_2\times\mathbf{u}_3}{\mathbf{u}_1 \cdot(\mathbf{u}_2 \times\mathbf{u}_3)} \cdot\mathbf{u}_2\\
& = & \frac{\mathbf{u}_2\cdot(\mathbf{u}_2\times\mathbf{u}_3)}{\mathbf{u}_1 \cdot(\mathbf{u}_2 \times\mathbf{u}_3)}\\
& = & \frac{\varepsilon_{ijk}u_ju_k\hat{\mathbf{e}}_i \cdot \mathbf{u_2}}{\mathbf{u}_1 \cdot(\mathbf{u}_2 \times\mathbf{u}_3)}
\end{alignat}
How do I show the numerator is zero now?

Is it because the two left over are always the reverse?
(123) and (132) = 1 - 1 = 0
 
Last edited:
The cross product of $\mathbf u_2$ and $\mathbf u_3$ is perpendicular to $\mathbf u_2$, therefore their dot product is zero $\square$.

Or if you want to do it with indices (your indices of the basis vectors are not quite right):
$\mathbf u_2 \cdot (\mathbf u_2 \times \mathbf u_3) $

$\qquad = u_{2i}\mathbf{\hat e}_i \cdot \varepsilon_{ijk}u_{2j}u_{3k}\mathbf{\hat e}_i$

$\qquad = \varepsilon_{ijk}u_{2i}u_{2j}u_{3k}$​

Since $\varepsilon_{ijk}$ is anti-symmetric in i and j, the result is zero $\square$.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
9
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K