MHB Recreational Number Theory, Unsolved Problem

Click For Summary
The discussion centers on the challenge of finding a perfect power k^m greater than 1, where neither k, m, nor k^m contain the digit 2 in their decimal representation, and they do not share any decimal digits. The original poster has attempted to find such integers using an online big integer calculator but has faced difficulties, especially as the numbers grow larger. They have successfully identified examples for other digits (d) but remain uncertain about the existence of a solution for d = 2. The poster suggests that a brute force search might yield results or that a proof could clarify the impossibility of such integers existing. The problem remains intriguing and unsolved, inviting further exploration by others.
Tamas
Messages
2
Reaction score
0
Find a perfect power k^m > 1 where k, m, k^m do not contain 2 in their decimal digits, nor do share any decimal digit, no matter if k^m might possibly be expressed in more than one way for some value, e.g. 8^2 = 4^3. I do not know if such an integer exists at all, or how many and how large they are if they do. What did I do to try finding a solution to this problem? I cannot compute or program, so I tried an online big integer calculator with manual input and checking. This was, though methodical, but slow. I got to very large numbers without success, and the more digits appeared, the less likelihood remained for finding a match. Since I am not a mathematician, let alone a number theorist, I cannot prove or disprove the existence of such integer. Finding one can be a proof, but it is beyond my capabilities. Still, this interesting problem fascinates me and I hope others will like it too.
 
Mathematics news on Phys.org
The more interesting it is, because powers exist with all the other individual decimal digits d missing from the otherwise also not decimal digit sharing k, m, and k^m.
So, d = 2 seems to be elusive, or, is indeed the exception?
Easily found examples for each d not equal 2 as follows:
For d = 0 -> 2^3 = 8; for d = 1 -> 3^2 = 9; for d = 3 -> 67^2 = 4489; for d = 4 -> 33^2 = 1089; for d = 5 -> 2^4 = 4^2 = 16; for d = 6 -> 7^2 = 49;
for d = 7 -> 44^2 = 1936; for d = 8 -> 34^2 = 1156; and for d = 9 -> 38^2 = 1444.
I believe a brute force search may bring up perhaps an example for d = 2, or an insightful proof is found for its impossibility and therefore non-existence.
Without these, we don't know.
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
576
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
752
  • · Replies 69 ·
3
Replies
69
Views
16K
Replies
6
Views
3K