MHB Recreational Number Theory, Unsolved Problem

AI Thread Summary
The discussion centers on the challenge of finding a perfect power k^m greater than 1, where neither k, m, nor k^m contain the digit 2 in their decimal representation, and they do not share any decimal digits. The original poster has attempted to find such integers using an online big integer calculator but has faced difficulties, especially as the numbers grow larger. They have successfully identified examples for other digits (d) but remain uncertain about the existence of a solution for d = 2. The poster suggests that a brute force search might yield results or that a proof could clarify the impossibility of such integers existing. The problem remains intriguing and unsolved, inviting further exploration by others.
Tamas
Messages
2
Reaction score
0
Find a perfect power k^m > 1 where k, m, k^m do not contain 2 in their decimal digits, nor do share any decimal digit, no matter if k^m might possibly be expressed in more than one way for some value, e.g. 8^2 = 4^3. I do not know if such an integer exists at all, or how many and how large they are if they do. What did I do to try finding a solution to this problem? I cannot compute or program, so I tried an online big integer calculator with manual input and checking. This was, though methodical, but slow. I got to very large numbers without success, and the more digits appeared, the less likelihood remained for finding a match. Since I am not a mathematician, let alone a number theorist, I cannot prove or disprove the existence of such integer. Finding one can be a proof, but it is beyond my capabilities. Still, this interesting problem fascinates me and I hope others will like it too.
 
Mathematics news on Phys.org
The more interesting it is, because powers exist with all the other individual decimal digits d missing from the otherwise also not decimal digit sharing k, m, and k^m.
So, d = 2 seems to be elusive, or, is indeed the exception?
Easily found examples for each d not equal 2 as follows:
For d = 0 -> 2^3 = 8; for d = 1 -> 3^2 = 9; for d = 3 -> 67^2 = 4489; for d = 4 -> 33^2 = 1089; for d = 5 -> 2^4 = 4^2 = 16; for d = 6 -> 7^2 = 49;
for d = 7 -> 44^2 = 1936; for d = 8 -> 34^2 = 1156; and for d = 9 -> 38^2 = 1444.
I believe a brute force search may bring up perhaps an example for d = 2, or an insightful proof is found for its impossibility and therefore non-existence.
Without these, we don't know.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top