MHB Recreational Number Theory, Unsolved Problem

Tamas
Messages
2
Reaction score
0
Find a perfect power k^m > 1 where k, m, k^m do not contain 2 in their decimal digits, nor do share any decimal digit, no matter if k^m might possibly be expressed in more than one way for some value, e.g. 8^2 = 4^3. I do not know if such an integer exists at all, or how many and how large they are if they do. What did I do to try finding a solution to this problem? I cannot compute or program, so I tried an online big integer calculator with manual input and checking. This was, though methodical, but slow. I got to very large numbers without success, and the more digits appeared, the less likelihood remained for finding a match. Since I am not a mathematician, let alone a number theorist, I cannot prove or disprove the existence of such integer. Finding one can be a proof, but it is beyond my capabilities. Still, this interesting problem fascinates me and I hope others will like it too.
 
Mathematics news on Phys.org
The more interesting it is, because powers exist with all the other individual decimal digits d missing from the otherwise also not decimal digit sharing k, m, and k^m.
So, d = 2 seems to be elusive, or, is indeed the exception?
Easily found examples for each d not equal 2 as follows:
For d = 0 -> 2^3 = 8; for d = 1 -> 3^2 = 9; for d = 3 -> 67^2 = 4489; for d = 4 -> 33^2 = 1089; for d = 5 -> 2^4 = 4^2 = 16; for d = 6 -> 7^2 = 49;
for d = 7 -> 44^2 = 1936; for d = 8 -> 34^2 = 1156; and for d = 9 -> 38^2 = 1444.
I believe a brute force search may bring up perhaps an example for d = 2, or an insightful proof is found for its impossibility and therefore non-existence.
Without these, we don't know.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top