MHB Recreational Number Theory, Unsolved Problem

Click For Summary
The discussion centers on the challenge of finding a perfect power k^m greater than 1, where neither k, m, nor k^m contain the digit 2 in their decimal representation, and they do not share any decimal digits. The original poster has attempted to find such integers using an online big integer calculator but has faced difficulties, especially as the numbers grow larger. They have successfully identified examples for other digits (d) but remain uncertain about the existence of a solution for d = 2. The poster suggests that a brute force search might yield results or that a proof could clarify the impossibility of such integers existing. The problem remains intriguing and unsolved, inviting further exploration by others.
Tamas
Messages
2
Reaction score
0
Find a perfect power k^m > 1 where k, m, k^m do not contain 2 in their decimal digits, nor do share any decimal digit, no matter if k^m might possibly be expressed in more than one way for some value, e.g. 8^2 = 4^3. I do not know if such an integer exists at all, or how many and how large they are if they do. What did I do to try finding a solution to this problem? I cannot compute or program, so I tried an online big integer calculator with manual input and checking. This was, though methodical, but slow. I got to very large numbers without success, and the more digits appeared, the less likelihood remained for finding a match. Since I am not a mathematician, let alone a number theorist, I cannot prove or disprove the existence of such integer. Finding one can be a proof, but it is beyond my capabilities. Still, this interesting problem fascinates me and I hope others will like it too.
 
Mathematics news on Phys.org
The more interesting it is, because powers exist with all the other individual decimal digits d missing from the otherwise also not decimal digit sharing k, m, and k^m.
So, d = 2 seems to be elusive, or, is indeed the exception?
Easily found examples for each d not equal 2 as follows:
For d = 0 -> 2^3 = 8; for d = 1 -> 3^2 = 9; for d = 3 -> 67^2 = 4489; for d = 4 -> 33^2 = 1089; for d = 5 -> 2^4 = 4^2 = 16; for d = 6 -> 7^2 = 49;
for d = 7 -> 44^2 = 1936; for d = 8 -> 34^2 = 1156; and for d = 9 -> 38^2 = 1444.
I believe a brute force search may bring up perhaps an example for d = 2, or an insightful proof is found for its impossibility and therefore non-existence.
Without these, we don't know.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...