chisigma said:
Posted the 03 27 2014 on
www.artofproblemsolving.com by the user TheCaffeinheartmachine and not yet solved...
For $\alpha> 2$ find $\displaystyle \int_{0}^{\infty} \frac{x-1}{x^{\alpha} - 1}\ dx$...
The way to solve this integral is the formula obtained in...
http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2494
$\displaystyle \sum_{n = 1}^{\infty} \frac{1}{(n + a) (n+b)} = \frac{\phi(b) - \phi(a)}{b - a}\ (1)$
... where...
$\displaystyle \phi(x) = \frac{d}{d x} \ln x!\ (2)$
First step is to separate the integral in two parts...
$\displaystyle \int_{0}^{\infty} \frac{1 - x}{1 - x^{\alpha}}\ d x = \int_{0}^{1} \frac{1 - x}{1 - x^{\alpha}}\ dx + \int_{0}^{1} x^{\alpha - 3}\ \frac{1 - x}{1 - x^{\alpha}}\ dx\ (3)$
For the first integral, using the (1), we find ...
$\displaystyle \frac{1 - x}{1 - x^{\alpha}} = 1 - x + x^{\alpha} - x^{\alpha + 1} + ... + x^{n\ \alpha} - x^{n\ \alpha+1} + ... \implies \int_{0}^{1} \frac{1 - x}{1 - x^{\alpha}} = \sum_{n = 0}^{\infty} \frac{1}{(n\ \alpha + 1)(n\ \alpha + 2)} = \frac{1}{2} + \frac{\phi(\frac{2}{\alpha}) - \phi(\frac{1}{\alpha})}{\alpha} \ (4) $
... and for the second...
$\displaystyle x^{\alpha - 3}\ \frac{1 - x}{1 - x^{\alpha}} = x^{\alpha - 3} - x^{\alpha - 2} + x^{2\ \alpha - 3} - x^{2\ \alpha - 2} + ... + x^{(n + 1)\ \alpha - 3} - x^{(n+1)\ \alpha - 2} + ... \implies $
$\displaystyle \implies \int_{0}^{1} x^{\alpha - 3}\ \frac{1 - x}{1 - x^{\alpha}}\ d x = \sum_{n=1}^{\infty} \frac{1}{(n\ \alpha - 2)\ (n\ \alpha - 1)} = \frac{\phi(- \frac{1}{\alpha}) - \phi(- \frac{2}{\alpha})}{\alpha}\ (5)$
... so that is...
$\displaystyle \int_{0}^{\infty} \frac{1 - x}{1 - x^{\alpha}}\ dx = \frac{1}{2} + \frac{\phi(\frac{2}{\alpha}) - \phi(\frac{1}{\alpha})}{\alpha} + \frac{\phi(- \frac{1}{\alpha}) - \phi(- \frac{2}{\alpha})}{\alpha}\ (6)$
Kind regards
$\chi$ $\sigma$