Recurrence relations for series solution of differential equation

Click For Summary
SUMMARY

This discussion focuses on solving the spheroidal wave equation as presented in the paper linked by the user. The proposed ansatz for the solution is given by $$S_{lm}(x)= e^{cx}(1-x^2)^{|m|/2} \sum_{p=0}^{+\infty} a_p (1+x)^p$$. The user struggles to derive the recurrence relations outlined in Eqs. (2.6) and (2.7) after expanding and grouping powers of \(x\). It is established that the series solution converges only for specific eigenvalues due to singular points at \(x = \pm 1\).

PREREQUISITES
  • Understanding of differential equations, specifically the spheroidal wave equation.
  • Familiarity with series solutions and power series expansions.
  • Knowledge of recurrence relations and their derivation from series coefficients.
  • Experience with computer algebra systems for simplifying complex expressions.
NEXT STEPS
  • Study the derivation of recurrence relations in differential equations, focusing on Eqs. (2.6) and (2.7) from the referenced paper.
  • Learn about singular points in differential equations and their impact on series solutions.
  • Explore the use of computer algebra systems like Mathematica or Maple for solving complex differential equations.
  • Investigate the concept of continued fractions and their applications in solving differential equations.
USEFUL FOR

Mathematicians, physicists, and graduate students working on differential equations, particularly those interested in series solutions and spheroidal wave functions.

dim_d00m
Messages
1
Reaction score
0
TL;DR
I'm looking for a three-term relation between the coefficients of a series solution to the spheroidal harmonics defining equation.
I am currently looking at section IIA of the following paper: https://arxiv.org/pdf/gr-qc/0511111.pdf. Eq. (2.5) proposes an ansatz to solve the spheroidal wave equation (2.1). This equation is
$$ \dfrac{d}{dx} \left((1-x^2) \dfrac{d}{dx}S_{lm} \right) + \left(c^2x^2 + A_{lm} - \dfrac{m^2}{1-x^2}\right)S_{lm}=0,$$

and the ansatz is

$$S_{lm}(x)= e^{cx}(1-x^2)^{|m|/2} \sum_{p=0}^{+\infty} a_p (1+x)^p.$$

Upon differentiating this ansatz and some algebra, I find the following equation:

$$ \sum_{p=0}^{+\infty} a_p (1+x)^p \left[ -2c(1+|m|)x(1+x^2) + c^2(1-x^2)^2 + |m|\left( (|m|+1)x^2 -1 \right) +(1-x^2)(c^2x^2+A_{lm}) -m^2 \right] + \sum_{p=0}^{+\infty} (p+1) a_{p+1} (1+x)^p \left[2x(1-x^2)^2 - 2(1+|m|)(1-x^2) \right] +\sum_{p=0}^{+\infty} (p+2)(p+1) a_{p+2} (1+x)^p (1-x^2)^2 =0. $$

Expanding and grouping powers of $x$, I get
$$\sum_{p=0}^{+ \infty} (1+x)^p \left[a_p[A_{lm} + c^2 - m(m+1) -2xc(m+1) + x^2(m(m+1)-c^2 -A_{lm}) + 2x^3 c (m+1)] \right]\\
+ 2(p+1) a_{p+1} [c- (m+1)x - 2cx^2 + (m+1)x^3 + cx^4] + (p+2)(p+1)a_{p+2}[1-2x^2+x^4]=0.$$

I have no idea how to proceed further. I've tried to look at equating the coefficients of the various powers of ##x## to 0, but I don't get anything like the recurrence relation outlined in Eqs. (2.6) and (2.7) of said paper. Any help would be much appreciated!
 
Physics news on Phys.org
Welcome to PF!

The basic idea with series solutions is to substitute into the DE, collect like powers of ##x## , and then equate the coefficient of each power of ##x## to zero. Doing this leads to the mess you've shown. Now, the authors have reduced this with perseverance (and or a computer algebra package) leading to the recurrence relations (2.6) and (2.7). Okay, starting with these recurrence relations, one needs to specify ##a_0## then use (2.6) to get ##a_1##. From here (2.7) may be used to find ##a_2## and so on. Sadly, this is where the real work starts.

The differential equation (2.1) has singular points at ##x = \pm 1##. The expansion, (2.5) is being taken around ##x=-1## so you will get an analytic solution valid in a region around ##-1##. The problem is the point ##x=1##. For almost all values of ##A_{lm}## the series will diverge at ##x=1##. The series will only converge for eigenvalues. Now, they solve this problem in equation (2.9). I have no clue how they arrived at this continued fraction. I'd be interested to find out.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
968
  • · Replies 1 ·
Replies
1
Views
543
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K