Reduce an equation to a homogenous equation?

  • Context: MHB 
  • Thread starter Thread starter Cadbury
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the process of reducing a specific differential equation, (2x + 3y - 5) dx + (3x - y - 2) dy = 0, into a homogeneous equation. Participants explore methods for achieving this reduction, focusing on transformations and manipulations of the equation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant expresses uncertainty about how to start the reduction process, suggesting a need for guidance on potential manipulations.
  • Another participant proposes using a linear transformation of the form u = x + A, v = y + B to reduce the equation to a homogeneous type.
  • A later reply outlines a detailed procedure involving the substitution of variables u and v, leading to expressions for dx and dy in terms of du and dv.
  • The same participant provides a derived relationship between dy and dx, ultimately leading to a new differential equation in terms of u and v.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method for reduction, as multiple approaches are suggested and explored. The discussion remains open-ended with various proposed techniques.

Contextual Notes

The discussion includes assumptions about the definitions of homogeneous functions and the applicability of transformations, which may not be universally agreed upon. The steps provided involve algebraic manipulations that depend on the correctness of earlier transformations.

Cadbury
Messages
11
Reaction score
0
Hi, please help me solve this problem :)

Reduce (2x + 3y - 5) dx + (3x - y - 2) dy = 0 into a homogenous equation

I know that a differential equation Mdx + Ndy is homogeneous in x and y and if M and N are homogeneous functions of the same degree but given this, I have no idea where to start. Should I multiply both sides to something? Any help will be appreciated :)
Thank you so much!
 
Last edited:
Physics news on Phys.org
Hi Cadbury,

I misunderstood your question at first but you can reduce your equation to a homogeneous type by a linear transformation of the form $u = x + A$, $v = y + B$ for constants $A$ and $B$.
 
Last edited:
Cadbury said:
Hi, please help me solve this problem :)

Reduce (2x + 3y - 5) dx + (3x - y - 2) dy = 0 into a homogenous equation

I know that a differential equation Mdx + Ndy is homogeneous in x and y and if M and N are homogeneous functions of the same degree but given this, I have no idea where to start. Should I multiply both sides to something? Any help will be appreciated :)
Thank you so much!


Welcome on MHB Cadbury!...

... the procedure is tedious but not difficult!... setting $\displaystyle 2\ x + 3\ y - 5 = u$ and $\displaystyle 3\ x - y - 2 = v$ You obtain first...

$\displaystyle d u = 2\ d x + 3\ d y$

$\displaystyle d v = 3\ d x - d y\ (1)$

Solving (1) ...

$\displaystyle d x = \frac{d u + 3\ d v}{11}$

$\displaystyle d y = \frac{3\ d u - 2\ d v}{11}\ (2)$

... and now from (2) and the original equation...

$\displaystyle \frac{d y}{d x} = \frac{3\ du - 2\ d v}{d u + 3\ d v} = - \frac{u}{v}\ (3)$

... and finally with some steps...

$\displaystyle \frac{d u}{d v} = \frac{2\ v - 3\ u}{3\ v + u}\ (4)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Welcome on MHB Cadbury!...

... the procedure is tedious but not difficult!... setting $\displaystyle 2\ x + 3\ y - 5 = u$ and $\displaystyle 3\ x - y - 2 = v$ You obtain first...

$\displaystyle d u = 2\ d x + 3\ d y$

$\displaystyle d v = 3\ d x - d y\ (1)$

Solving (1) ...

$\displaystyle d x = \frac{d u + 3\ d v}{11}$

$\displaystyle d y = \frac{3\ d u - 2\ d v}{11}\ (2)$

... and now from (2) and the original equation...

$\displaystyle \frac{d y}{d x} = \frac{3\ du - 2\ d v}{d u + 3\ d v} = - \frac{u}{v}\ (3)$

... and finally with some steps...

$\displaystyle \frac{d u}{d v} = \frac{2\ v - 3\ u}{3\ v + u}\ (4)$

Kind regards

$\chi$ $\sigma$

Thank you very much! :) :) :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K