Reduce an equation to a homogenous equation?

  • Context: MHB 
  • Thread starter Thread starter Cadbury
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on reducing the differential equation (2x + 3y - 5) dx + (3x - y - 2) dy = 0 into a homogeneous equation. The method involves a linear transformation where u = 2x + 3y - 5 and v = 3x - y - 2. By deriving the differentials du and dv, the equation can be transformed into the form dy/dx = -u/v, leading to the final relationship du/dv = (2v - 3u)/(3v + u). This systematic approach allows for the conversion of non-homogeneous equations into a homogeneous format.

PREREQUISITES
  • Understanding of differential equations and their classifications
  • Familiarity with linear transformations in mathematics
  • Knowledge of partial derivatives and their applications
  • Ability to manipulate algebraic expressions and equations
NEXT STEPS
  • Study the method of linear transformations in differential equations
  • Learn about homogeneous functions and their properties
  • Explore the application of the chain rule in differential calculus
  • Investigate further examples of reducing non-homogeneous equations
USEFUL FOR

Students and professionals in mathematics, particularly those studying differential equations, as well as educators looking for teaching methods related to homogeneous equations.

Cadbury
Messages
11
Reaction score
0
Hi, please help me solve this problem :)

Reduce (2x + 3y - 5) dx + (3x - y - 2) dy = 0 into a homogenous equation

I know that a differential equation Mdx + Ndy is homogeneous in x and y and if M and N are homogeneous functions of the same degree but given this, I have no idea where to start. Should I multiply both sides to something? Any help will be appreciated :)
Thank you so much!
 
Last edited:
Physics news on Phys.org
Hi Cadbury,

I misunderstood your question at first but you can reduce your equation to a homogeneous type by a linear transformation of the form $u = x + A$, $v = y + B$ for constants $A$ and $B$.
 
Last edited:
Cadbury said:
Hi, please help me solve this problem :)

Reduce (2x + 3y - 5) dx + (3x - y - 2) dy = 0 into a homogenous equation

I know that a differential equation Mdx + Ndy is homogeneous in x and y and if M and N are homogeneous functions of the same degree but given this, I have no idea where to start. Should I multiply both sides to something? Any help will be appreciated :)
Thank you so much!


Welcome on MHB Cadbury!...

... the procedure is tedious but not difficult!... setting $\displaystyle 2\ x + 3\ y - 5 = u$ and $\displaystyle 3\ x - y - 2 = v$ You obtain first...

$\displaystyle d u = 2\ d x + 3\ d y$

$\displaystyle d v = 3\ d x - d y\ (1)$

Solving (1) ...

$\displaystyle d x = \frac{d u + 3\ d v}{11}$

$\displaystyle d y = \frac{3\ d u - 2\ d v}{11}\ (2)$

... and now from (2) and the original equation...

$\displaystyle \frac{d y}{d x} = \frac{3\ du - 2\ d v}{d u + 3\ d v} = - \frac{u}{v}\ (3)$

... and finally with some steps...

$\displaystyle \frac{d u}{d v} = \frac{2\ v - 3\ u}{3\ v + u}\ (4)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Welcome on MHB Cadbury!...

... the procedure is tedious but not difficult!... setting $\displaystyle 2\ x + 3\ y - 5 = u$ and $\displaystyle 3\ x - y - 2 = v$ You obtain first...

$\displaystyle d u = 2\ d x + 3\ d y$

$\displaystyle d v = 3\ d x - d y\ (1)$

Solving (1) ...

$\displaystyle d x = \frac{d u + 3\ d v}{11}$

$\displaystyle d y = \frac{3\ d u - 2\ d v}{11}\ (2)$

... and now from (2) and the original equation...

$\displaystyle \frac{d y}{d x} = \frac{3\ du - 2\ d v}{d u + 3\ d v} = - \frac{u}{v}\ (3)$

... and finally with some steps...

$\displaystyle \frac{d u}{d v} = \frac{2\ v - 3\ u}{3\ v + u}\ (4)$

Kind regards

$\chi$ $\sigma$

Thank you very much! :) :) :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K