Reference frame in collision problems

AI Thread Summary
In collision problems involving two balls, it is established that while the rest frame of Ball 2 can be used to analyze their relative velocity, this frame is not inertial due to Ball 2's acceleration during the collision. The discussion emphasizes that if the relative velocity remains unchanged in sign, it indicates a lack of significant collision dynamics. The participants clarify that there is no inertial reference frame where Ball 2 can be considered fixed throughout the entire process, including before and after the collision. Ultimately, the conclusion reached is that such an inertial reference frame does not exist. This highlights the complexities of analyzing elastic collisions in non-inertial frames.
feynman1
Messages
435
Reaction score
29
2 balls (Ball 1 and Ball 2) collide fully elastically and their relative velocity stays the same as but in sign opposite to that before the collision. Is there any sort of reference frame in which Ball 2 is always fixed (at rest) so that one can look at their relative velocity always in that reference frame? Here 'always' includes before and after the collision.
 
Last edited:
Physics news on Phys.org
feynman1 said:
Is there any sort of reference frame in which Ball 2 is always fixed (at rest) so that one can look at their relative velocity always in that reference frame?
Yes, the rest frame of Ball 2 is such a frame of reference (surprise!), but it is not inertial and therefore not necessarily a good choice to describe the process.
 
  • Like
Likes Dale and feynman1
DrStupid said:
Yes, the rest frame of Ball 2 is such a frame of reference (surprise!), but it is not inertial and therefore not necessarily a good choice to describe the process.
Do you mean it's not inertial at the instant of the collision but inertial before and after? If so, Ball 2 won't be fixed in that frame, which isn't what I look for.
 
feynman1 said:
2 balls (Ball 1 and Ball 2) collide fully elastically and their relative velocity stays the same as that before the collision. Is there any sort of reference frame in which Ball 2 is always fixed (at rest) so that one can look at their relative velocity always in that reference frame? Here 'always' includes before and after the collision.
Relative velocity is per definition the velocity of ball A in the rest frame of ball B (or vice versa). But if the relative velocity doesn't change, then there is not much of a collision.
 
feynman1 said:
Do you mean it's not inertial at the instant of the collision but inertial before and after? If so, Ball 2 won't be fixed in that frame, which isn't what I look for.
It is not inertial at the instant of the collision because Ball 2 (which is accelerated during the collision) is fixed in that frame.
 
  • Like
Likes feynman1
A.T. said:
Relative velocity is per definition the velocity of ball A in the rest frame of ball B (or vice versa). But if the relative velocity doesn't change, then there is not much of a collision.
Just edited the original question, relative v changes sign.
 
DrStupid said:
It is not inertial at the instant of the collision because Ball 2 (which is accelerated during the collision) is fixed in that frame.
Right, then have you an answer to the original question?
 
feynman1 said:
Right, then have you an answer to the original question?
He already answered it in post 2!
 
Dale said:
He already answered it in post 2!
I knew all along that such a frame written in post 2 doesn't work well. Then can we conclude that there's no inertial reference frame in which Ball 2 is always fixed?
 
  • #10
feynman1 said:
Then can we conclude that there's no inertial reference frame in which Ball 2 is always fixed?
Yes.
 

Similar threads

Back
Top