MHB Relationship between metric and inner product

dingo
Messages
7
Reaction score
0
Hi, I have this question:

in the context of linear algebra, would it be correct to say that a metric is a kind of inner product?
 
Physics news on Phys.org
No.

Inner products are bilinear maps, and a metric need not be. For example, the function

$d: V \times V \to \Bbb R$ given by:

$d(v,w) = 1$ if $v \neq w$
$d(v,v) = 0$

is a metric, but it most assuredly is *not* an inner product.

However...*given* an inner product $\langle \cdot,\cdot\rangle$, we can define a metric on an inner product space by:

$d(v,w) = \sqrt{\langle v-w,v-w\rangle}$

Metrics are a sort of "relaxing" of the requirements of the norm induced by an inner product-we can put a metric on an inner product space, but we may not be able to put an inner product on a metric space (such a space may not even have a vector addition defined on it).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top