- #1

- 49

- 0

## Main Question or Discussion Point

If we're working in R^n and we consider the elements of a basis for R^n to be the column vectors of an nxn invertible matrix B, then what is the relationship between B and the matrix whose row vectors represent elements of the corresponding dual basis for R^n*? My guess, which Wikipedia helped me formulate, is that the row vectors of the inverse of B constitute the dual basis, but I'm still not sure. Also, if we're working in general finite-dimensional vector spaces, does the process of finding a dual basis become harder, or is it trivial once you know how to do it for R^n?

Thanks.

Thanks.