In linear algebra, given a vector space V with a basis B of vectors indexed by an index set I (the cardinality of I is the dimensionality of V), the dual set of B is a set B∗ of vectors in the dual space V∗ with the same index set I such that B and B∗ form a biorthogonal system. The dual set is always linearly independent but does not necessarily span V∗. If it does span V∗, then B∗ is called the dual basis or reciprocal basis for the basis B.
Denoting the indexed vector sets as
B
=
{
v
i
}
i
∈
I
{\displaystyle B=\{v_{i}\}_{i\in I}}
and
B
∗
=
{
v
i
}
i
∈
I
{\displaystyle B^{*}=\{v^{i}\}_{i\in I}}
, being biorthogonal means that the elements pair to have an inner product equal to 1 if the indexes are equal, and equal to 0 otherwise. Symbolically, evaluating a dual vector in V∗ on a vector in the original space V:
v
i
⋅
v
j
=
δ
j
i
=
{
1
if
i
=
j
0
if
i
≠
j
,
{\displaystyle v^{i}\cdot v_{j}=\delta _{j}^{i}={\begin{cases}1&{\text{if }}i=j\\0&{\text{if }}i\neq j{\text{,}}\end{cases}}}
where
δ
j
i
{\displaystyle \delta _{j}^{i}}
is the Kronecker delta symbol.
Hi,
I'm in trouble with the different terminologies used for tensor product of two vectors.
Namely a dyadic tensor product of vectors ##u, v \in V## is written as ##u \otimes v##. It is basically a bi-linear map defined on the cartesian product ##V^* \times V^* \rightarrow \mathbb R##.
From a...
Consider the concepts of dual space, dual basis, dual map, and annihilator.
Given a linear map ##T\in L(V,W)##, the dual space of ##T## is the vector space ##V'=L(V,\mathbb{F})## where ##\mathbb{F}## is a field.
Note that given any basis ##v_1, ..., v_n## of ##V##, each distinct linear...
I'm trying to understand why it is possible to express vectors ##\mathbf{e}^i## of the dual basis in terms of the vectors ##\mathbf{e}_j## of the original basis through the dual metric tensor ##g^{ij}##, and vice versa, in these ways:
##\mathbf{e}^i=g^{ij}\mathbf{e}_j##...
This proof was in my book.
Tensor product definition according to my book: $$V⊗W=\{f: V^*\times W^*\rightarrow k | \textrm {f is bilinear}\}$$ wher ##V^*## and ##W^*## are the dual spaces for V and W respectively.
I don't understand the step where they say ##(e_i⊗f_j)(φ,ψ) = φ(e_i)ψ(f_j)##...
a) Since ##tan(x/x_0)## is not defined for ##x=\pm\pi/2\cdot x_0## I assume x must be in between those values therefore ##-\pi/2\cdot x_0 < x < \pi/2\cdot x_0## and y can be any real number. Is this the correct answer on a)?
b) I can solve x and y for s and t which gives me ##y=y_0\cdot s## and...
Im very new to the terminologies of isometric basis and musical isomorphism, will appreciate a lot if someone could explain this for me in a simple way for a guy with limited experience in this field.
The concrete problem I want to figure out is this:
Given:
Let ##v_1 = (1,0,0) , v_2 = (1,1,0)...
I am working through a book with my professor and we read a section on the dual space, $V^*$.
It gives the basis dual to the basis of $V$ and proves that this is in fact a basis for $V^*$.
Characterized by $\alpha^i(e_j)=\delta_j^i$
I understand the proof given. But he said a different...
This is from Kreyszig's Introductory Functional Analysis Theorem 2.9-1.
Let $X$ be an n-dimensional vector space and $E=\{e_1, \cdots, e_n \}$ a basis for $X$. Then $F = \{f_1, \cdots, f_n\}$ given by (6) is a basis for the algebraic dual $X^*$ of $X$, and $\text{dim}X^* = \text{dim}X=n$...
Hi everyone!I'm trying to obtain the natural and dual basis of a circular paraboloid parametrized by:
$$x = \sqrt U cos(V)$$
$$y = \sqrt U sen(V)$$
$$z = U$$
with the inverse relationship:
$$V = \arctan \frac{y}{x}$$
$$U = z$$
The natural basis is:
$$e_U = \frac{\partial \overrightarrow{r}}...
Please help.
I do understand the representation of a vector as: vi∂xi
I also understand the representation of a vector as: vidxi
So far, so good.
I do understand that when the basis transforms covariantly, the coordinates transform contravariantly, and v.v., etc.
Then, I study this thing...
Hello all!
I've just started to study general relativity and I'm a bit confused about dual basis vectors.
If we have a vector space \textbf{V} and a basis \{\textbf{e}_i\}, I can define a dual basis \{\omega^i\} in \textbf{V}^* such that: \omega^i(\textbf{e}_j) = \delta^i_j But in some pdf and...
I am reading Segei Winitzki's book: Linear Algebra via Exterior Products ...
I am currently focused on Section 1.6: Dual (conjugate) vector space ... ...
I need help in order to get a clear understanding of an aspect of the notion or concept of the dual basis \{ e^*_1, e^*_2, \ ... \ ... \...
Homework Statement
Homework Equations[/B]
The Attempt at a Solution
From that point, I don't know what to do. How do I prove linear independence if I have no numerical values? Thank you.
I'm confused by the following passage in our book (translated).
An alternative too choosing the normed tangent vectors ##\vec e_i = \frac{1}{h_1}\frac{\partial \vec r}{\partial u_i}## with scale factors ##h_i = \left| \frac{\partial \vec r }{\partial u_i} \right| ## is to choose the normal...
The problem statement, all variable
Let ##\phi_1,...,\phi_n \in V^*## all different from the zero functional. Prove that
##\{\phi_1,...,\phi_n\}## is basis of ##V^*## if and only if ##\bigcap_{i=1}^n Nu(\phi_i)={0}##.
The attempt at a solution.
For ##→##: Let ##\{v_1,...,v_n\}## be...
I have been reading an introductory book to General Relativity by H Hobson. I have been following it step by step and now I am stuck. It is stated in the book that:
"It is straightforward to show that the coordinate and dual basis vectors
themselves are related...
"ea = gabeb ..."
I have...
Hi, I'm learning about vector spaces and I would like to ask some questions about it.
Suppose I have a vector space V, and a basis for V \{v_1, ... v_n\}. Then there is a dual space V^* consisting all linear functions whose domain is V and range is ℝ. Then the space V^* has a dual basis \{x_1...
{(a_i)_j} is the dual basis to the basis {(e_i)_j}
I want to show that
((a_i)_1) \wedge (a_i)_2 \wedge... \wedge (a_i)_n ((e_i)_1,(e_i)_2,...,(e_i)_n) = 1
this is exercise 4.1(a) from Spivak. So my approach was:
\BigWedge_ L=1^k (a_i)_L ((e_i)_1,...,(e_i)_n) = k! Alt(\BigCross_L=1^k...
Hi everyone,
Pardon the neophyte question, but is a one-form the same thing as a dual basis vector? If not, are they related in some way, or completely different concepts/entities?
Thank you!
If we're working in R^n and we consider the elements of a basis for R^n to be the column vectors of an nxn invertible matrix B, then what is the relationship between B and the matrix whose row vectors represent elements of the corresponding dual basis for R^n*? My guess, which Wikipedia helped...
Let V be the space of polynomials of degree 3 or less over \Re. For every \lambda\in\Re the evaluation at \lambda is the map ev_{\lambda} such that V \rightarrow \Re is linear. How do we find the coefficients of ev_{2} in the basis dual to \{1,x,x^2,x^3\}?
I was reading about dual spaces and dual bases in the book Linear Algebra by Friedberg, Spence and Insel (FSI) and they give an example of a linear functional, f_i (x) = a_i where [x]_β = [a_1 a_2 ... a_n] denotes the matrix representation of x in terms of the basis β = {x_1, x_2, ..., x_n} of...
Homework Statement
Prove that if m < n and if y_1,...,y_m are linear functionals on an n-dimensional vector space V, then there exists a non-zero vector x in V such that [x,y_j] = 0 for j = 1,..., m
Homework Equations
The Attempt at a Solution
My thinking is somehow that we...
Homework Statement
Define a non-zero linear functional y on C^2 such that if x1=(1,1,1) and x2=(1,1,-1), then [x1,y]=[x2,y]=0.
Homework Equations
N/A
The Attempt at a Solution
Le X = {x1,x2,...,xn} be a basis in C3 whose first m elements are in M (and form a basis in M). Let X' be...
Normally, if you have an orthonormal basis for a space, you can just apply your metric tensor to get your dual basis, since for an orthonormal basis all the dot products between the base vectors will boil down to a Kronecker delta. However, in Minkowski space, the dot product between a unit...
To find dual basis from the inner product Matrix!?
Homework Statement
WE know the inner product matrix (capital)Gamma and that's all. How do we "construct" a dual basis?
Homework Equations
The Attempt at a Solution
I know that the orthonormal basis is nothing but a dual...
[SOLVED] Linear Algebra Dual Basis
Let V= R3 and define f1, f2, f3 in V* as follows:
f1 = x -2y
f2 = x + y +z
f3 = y -3z
part (a): prove that {f1, f2, f3} is a basis for V*
I did this by using the gauss jordan method and showing that {f1, f2, f3} is linearly independent. Now...