Relative velocity in special relativity

Click For Summary
SUMMARY

The discussion focuses on calculating the relative velocity of two airplanes using the Lorentz transformation in the context of special relativity. The derived formula for the relative velocity, denoted as $$\mathbf{v}^{\prime}$$, is expressed in terms of the velocities $$\mathbf{u}$$ and $$\mathbf{v}$$ of the two planes as observed from the ground. The final expression for the square of the relative velocity is given as $$v^{\prime2}=\frac{1}{\gamma^{2}\left(1-\mathbf{u}\cdot\mathbf{v}\right)^{2}}\left\{ \left(\mathbf{v}-\mathbf{u}\right)^{2}+\frac{1}{u^{2}}\left(\gamma-1\right)^{2}\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)^{2}+\frac{2}{u^{2}}\mathbf{u}\cdot\mathbf{v}\left(\gamma-1\right)\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)-2\left(\gamma-1\right)\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)\right\}.

PREREQUISITES
  • Understanding of Lorentz transformations in special relativity
  • Familiarity with vector calculus and operations
  • Knowledge of the concept of gamma ($$\gamma$$) in relativistic physics
  • Ability to manipulate algebraic expressions involving vectors
NEXT STEPS
  • Study the derivation of the Lorentz transformation equations
  • Learn about the implications of relativistic velocity addition
  • Explore applications of special relativity in high-speed scenarios
  • Investigate the geometric interpretation of velocity vectors in spacetime
USEFUL FOR

Students of physics, particularly those studying special relativity, aerospace engineers, and anyone interested in the mathematical foundations of relativistic motion.

Physicssssss
Messages
2
Reaction score
0

Homework Statement


Imagine we are observing two aeroplaes from the ground and let their velocities be ##\mathbf{u}## and ##\mathbf{v}## respectively. Assume that the first plane has radar equipment permitting a measurement of the speed of the other plane relative to itself. The velocity so measured will be the relative velocity of our definition. We must express this relative velocity in terms of the components of the velocities ##\mathbf{u}## and ##\mathbf{v}## of the two planes, as observed from the ground. The velocity of the second plane measured from the ground is $$\mathbf{v}=\frac{d\mathbf{r}}{dt}$$ while its velocity measured from the other plane is $$\mathbf{v}^{\prime}=\frac{d\mathbf{r}^{\prime}}{dt^{\prime}}.$$Using the general Lorentz transformation we have $$\mathbf{v}^{\prime}=\frac{\mathbf{v}-\mathbf{u}+\left(\gamma-1\right)\left(\frac{\mathbf{u}}{u^{2}}\right)\left\{ \left(\mathbf{u}\cdot\mathbf{v}\right)-u^{2}\right\} }{\gamma\left(1-\mathbf{u}\cdot\mathbf{v}\right)}$$where$$\gamma=\frac{1}{\sqrt{1-u^{2}}}.$$Calculate the square of the vector ##\mathbf{v}^{\prime}##.

Homework Equations


$$\left(\mathbf{u}\times\mathbf{v}\right)^{2}=u^{2}v^{2}-\left(\mathbf{u}\cdot\mathbf{v}\right)^{2}$$

The Attempt at a Solution


The solutions is $$v^{\prime2}=1-\frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{\left(1-\mathbf{u}\cdot\mathbf{v}\right)^{2}}=\frac{\left(\mathbf{u}-\mathbf{v}\right)^{2}-\left(\mathbf{u}\times\mathbf{v}\right)^{2}}{\left(1-\mathbf{u}\mathbf{\cdot}\mathbf{v}\right)^{2}}.$$Taking the square of the vector ##\mathbf{v}^{\prime}## I have $$v^{\prime2}=\frac{1}{\gamma^{2}\left(1-\mathbf{u}\cdot\mathbf{v}\right)^{2}}\left\{ \left(\mathbf{v}-\mathbf{u}\right)^{2}+\frac{1}{u^{2}}\left(\gamma-1\right)^{2}\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)^{2}+\frac{2}{u^{2}}\mathbf{u}\cdot\mathbf{v}\left(\gamma-1\right)\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)-2\left(\gamma-1\right)\left(\mathbf{u}\cdot\mathbf{v}-u^{2}\right)\right\}.$$ Can someone help me?
 
Physics news on Phys.org
It is an answer that depends on v and u only, that is good. Now you can simplify it (don't forget to express gamma via u). Not nice, and there could be a shorter way, but it should work.
 
It works! Thanks
 

Similar threads

Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
44
Views
6K