I Relativistic length contraction

leonid.ge
Messages
17
Reaction score
4
Hello!
I have a question.
If there is a wooden rod which burns certain time, and an astronaut inside rocket lights two such rods: one oriented along the rocket's length and the other goes across the rocket, and an observer see the rocket passing by with a relativistic speed. Will the observer see that the rod which goes along the rocket burns faster because it's length contracted?

And if we have in the rocket two clocks which use spring pendulum, and one clock is oriented so its spring oscillates along the rocket and in the other clock it oscillates across the rocket - will the first clock go slower than the second (for the observer watching the rocket passing by with relativistic speed)?
 
Physics news on Phys.org
No and no.

The first case is a bit trickier though as it cannot be solved without taking additional care about relativity of simultaneity. The rod oriented along the rocket will burn in different times depending on whether it burns front to back or back to front.
 
  • Like
Likes FactChecker and topsquark
leonid.ge said:
Will the observer see that the rod which goes along the rocket burns faster because it's length contracted?
No. Example burning back to front:
The rest-frame of the observer shall be the unprimed frame ##S##.
The rest-frame of the rocket the primed frame ##S'##.

##\Delta x'##:= rest-length of the rod, which goes along the rocket.
##\Delta t'##:= time of the burning with reference to the rocket's rest-frame.
##u'##:= velocity of the fire with reference to the rocket's rest-frame.
##u##:= velocity of the fire with reference to the observer's rest-frame.
##v##:= velocity of the rocket with reference to the observer's rest-frame.

Time of the burning (back to front) with reference to the observer's rest-frame, considering length-contraction:
##\Delta t = \frac{\Delta x'}{\gamma (u-v)} = \frac{\Delta x'}{\gamma}\frac{1}{\frac{u'+v}{1+u'v/c^2}-v} = \frac{\Delta x'}{\gamma} \frac{1+u'v/c^2}{u'(1-v^2/c^2)} = \gamma \frac{\Delta x'}{u'} (1+\frac{u'v}{c^2}) = \gamma(\Delta t' + \Delta x' \frac{v}{c^2})##
This is the inverse Lorentz-transformation for time.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
4
Views
1K
Replies
7
Views
2K
Replies
50
Views
3K
Replies
78
Views
6K
Replies
14
Views
2K
Replies
166
Views
14K
Back
Top