Relativistic Velocity Addition: Calculating Electron Speed

Click For Summary
SUMMARY

The discussion focuses on the application of relativistic velocity addition to de Broglie matter waves, specifically in the context of an electron wave observed from different inertial frames. It is established that the relativistic velocity addition formula applies to both group and phase velocities of matter waves. The group velocity of the matter wave corresponds to the electron's velocity, while the phase velocity can be transformed using the relativistic velocity addition formula. The conversation emphasizes the necessity of distinguishing between group and phase velocities when discussing relativistic effects on matter waves.

PREREQUISITES
  • Understanding of special relativity and its principles
  • Familiarity with de Broglie matter waves and their properties
  • Knowledge of group and phase velocity concepts
  • Proficiency in applying the relativistic velocity addition formula
NEXT STEPS
  • Study the implications of de Broglie waves in quantum mechanics
  • Learn about the mathematical derivation of the relativistic velocity addition formula
  • Explore the differences between group velocity and phase velocity in wave mechanics
  • Investigate the role of 4-momentum in special relativity and its applications
USEFUL FOR

Physicists, students of quantum mechanics, and anyone interested in the intersection of wave-particle duality and special relativity will benefit from this discussion.

lindberg
Messages
40
Reaction score
20
TL;DR
Does the relativistic velocity addition apply to De Broglie matter waves?
If we imagine launching an electron wave in a reference frame S with speed v, should someone viewing the electron from frame S1, which is in inertial motion referring to S, use the relativistic velocity addition to calculate the speed of the electron?
 
Physics news on Phys.org
First of all, any thread on de Broglie matter waves need a compulsory disclaimer about it being a concept on the way to quantum mechanics that has been superceded since about a hundred years ago.

With that out of the way, relativistic velocity composition holds for any speeds. However you need to choose what you mean by ”speed” when it comes to a wave that is not lightlike: group or phase velocity?
 
  • Like
Likes   Reactions: vanhees71, lindberg and Vanadium 50
To add to Orodruin's message, matter waves are not just a step on the way to quantum mechanics, it's a non-relativistic step on the way to non-relativistic quantum mechanics. Mixing this with relativity is unlikely to be sensible.
 
  • Like
Likes   Reactions: vanhees71 and lindberg
lindberg said:
Summary: Does the relativistic velocity addition apply to De Broglie matter waves?

If we imagine launching an electron wave in a reference frame S with speed v, should someone viewing the electron from frame S1, which is in inertial motion referring to S, use the relativistic velocity addition to calculate the speed of the electron?

The group velocity of the matter wave is equal to the velocity of the electron. As already mentioned by Orodruin, the relativistic velocity composition holds for any speeds. Accordingly, the "relativistic velocity addition" formula can be applied to both, the group velocity and the phase velocity.

W. Rindler said:
In a beautiful application of SR, de Broglie proposed the following relation between the particle's 4-momentum ##\mathbf P## and the wave 4-vector of the associated wave ... :
$$ \mathbf P= h \mathbf L, \ \ \text{that is,} \ \ E(\frac{\mathbf u}{c^2},\frac{1}{c})=h\nu(\frac{\mathbf n}{w},\frac{1}{c}). \ \ \ \ \ \ \ \text{(51)}$$
In fact, if Planck's relation (50) is to be maintained for a material particle and its associated wave, then (51) is inevitable. For then the 4th components of the 4-vectors on either side of (51) are equal; by our earlier "zero-component lemma", the entire 4-vectors must therefore be equal! From (51) it then follows that the wave travels in the direction of the particle (##\mathbf n## ∝ ##\mathbf u##), but with a larger velocity ##w##, given by de Broglie's relation
$$uw=c^2, \ \ \ \ \ \ \ \text{(52)}$$
as can be seen by comparing the magnitudes of the leading 3-vectors. (However, the group velocity of the wave, which carries the energy, can be shown to be still ##u##.) The wave must necessarily travel at a speed other than the particle unless that speed is ##c##, for waves and particles aberrate differently, and a particle comoving with its wave would slide across it sideways in another frame.
Source:
http://www.scholarpedia.org/article/Special_relativity:_mechanics#Particles_and_Waves

Assume an electron moving in the unprimed frame with velocity ##u## in x-direction. You can transform it's velocity to a primed frame, which is moving with ##v## in x-direction, by applying the "relativistic velocity addition" formula:

##u' = u \oplus (-v) = \frac{u-v}{1-uv/c^2}##

The phase velocity in the unprimed frame is ##w = \frac{c^2}{u}##. If you apply the "relativistic velocity addition" formula to this phase velocity, then you get:

##w' = w \oplus (-v) = \frac{(c^2/u)-v}{1-(c^2v/uc^2)} = \frac{1-uv/c^2}{(u/c^2)-(v/c^2)} = c^2/u'##, as it should be.
 
Last edited:
  • Like
Likes   Reactions: lindberg
  • Like
Likes   Reactions: Sagittarius A-Star

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
866
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 87 ·
3
Replies
87
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K