What is Waves: Definition and 999 Discussions

The United States Naval Reserve (Women's Reserve), better known as the WAVES (for Women Accepted for Volunteer Emergency Service), was the women's branch of the United States Naval Reserve during World War II. It was established on July 21, 1942 by the U.S. Congress and signed into law by President Franklin D. Roosevelt on July 30. This authorized the U.S. Navy to accept women into the Naval Reserve as commissioned officers and at the enlisted level, effective for the duration of the war plus six months. The purpose of the law was to release officers and men for sea duty and replace them with women in shore establishments. Mildred H. McAfee, on leave as president of Wellesley College, became the first director of the WAVES. She was commissioned a lieutenant commander on August 3, 1942, and later promoted to commander and then to captain.
The notion of women serving in the Navy was not widely supported in the Congress or by the Navy, even though some of the lawmakers and naval personnel did support the need for uniformed women during World War II. Public Law 689, allowing women to serve in the Navy, was due in large measure to the efforts of the Navy's Women's Advisory Council, Margaret Chung, and Eleanor Roosevelt, the First Lady of the United States.
To be eligible for officer candidate school, women had to be aged 20 to 49 and possess a college degree or have two years of college and two years of equivalent professional or business experience. Volunteers at the enlisted level had to be aged 20 to 35 and possess a high school or a business diploma, or have equivalent experience. The WAVES were primarily white, but 72 African-American women eventually served. The Navy's training of most WAVE officer candidates took place at Smith College, Northampton, Massachusetts. Specialized training for officers was conducted on several college campuses and naval facilities. Most enlisted members received recruit training at Hunter College, in the Bronx, New York City. After recruit training, some women attended specialized training courses on college campuses and at naval facilities.
The WAVES served at 900 stations in the United States. The territory of Hawaii was the only overseas station where their staff was assigned. Many female officers entered fields previously held by men, such as medicine and engineering. Enlisted women served in jobs from clerical to parachute riggers. Many women experienced workplace hostility from their male counterparts. The Navy's lack of clear-cut policies, early on, was the source of many of the difficulties. The WAVES' peak strength was 86,291 members. Upon demobilization of the officer and enlisted members, Secretary of the Navy James Forrestal, Fleet Admiral Ernest King, and Fleet Admiral Chester Nimitz all commended the WAVES for their contributions to the war effort.

View More On Wikipedia.org
  1. Slimy0233

    B [SOLVED] Regarding the Superposition of Two Plane Waves

    My professor was teaching me about the superposition of two waves and after this derivation, he marked ##2Acos(\frac{dk}{2}x -\frac{d\omega}{2}t)## as the oscillation part and ##sin (Kx-\omega t)## as the oscillation part, I don't understand why? Any answers regarding this would be considered...
  2. apostolosdt

    A NANOGrav waves support string theory?

    NANOGrav waves are real observational data, and now this: https://arxiv.org/abs/2307.08601. I don't know much in this area of research, except for the basics on LIGO and the like. Any comment from the knowledgeable members here?
  3. JD23

    I Negative radiation pressure?

    There are a few articles about negative radiation pressure - in theory allowing to pull e.g. solitons: https://scholar.google.pl/scholar?q=negative+radiation+pressure The articles suggests realization in graphene - could it work? Could there be different realizations, like negative radiation...
  4. Slimy0233

    Classical Best books to study Oscillations and Waves

    I was studying for a Physics Masters Entrance Exams (India) and my coaching institute basically suggested me these books: I actually have regretted buying books without prior research in the past, so I am making sure I do my fair share of research before buying any of these or something...
  5. Slimy0233

    I Understanding the propagation of sound on molecular Scale

    I am actually an undergraduate in Physics but I didn't understand this basic phenomenon. I saw this youtube video today and I was wondering how molecule in air would be able to regain it's initial position after it has transferred it's energy to the adjacent particle. Is it like a rebound, it...
  6. S

    B To measure light's frequency, do we interact with each crest + trough?

    How are we interacting with light to measure its frequency? And how'd we learn the distance between its crests and troughs? What sort of interactions are giving us such info?
  7. Leonard Begy

    B Gravity waves and Planck's constant

    Can the energy of a gravitational wave be related to Plancks constant?
  8. Graffite

    I Two Waves In Phase: Exploring the Possibility w/ Graphs

    May I know how is it possible for two waves to be in phase when they have different amplitude? I couldn't find any existing graphs that clearly shows how the two waves are in phase, would anyone be able to sketch it out so I can have a look. Thank you:smile:
  9. Laci

    I Why no plane waves of macroscopic bodies? The micro-macro threshold...

    One of the strange features of Quantum Mechanics is that for his formulation one needs the classical physics that actually should emerge as its macroscopic limit. All experiences with quantum objects have to be analyzed through classical "glasses". Naturally, then the question arises: where...
  10. orangephysik

    Superposition of two one-dimensional harmonic waves

    ##\mathbf {Homework ~Statement:}## Consider the superposition of two one-dimensional harmonic waves $$s_1(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.65m^{-1} \cdot x)$$ $$s_2(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.5m^{-1} \cdot x)$$ ##\mathbf {a)}## Calculate the wavelength ##\lambda##...
  11. J

    Best way to measure magnetic waves for electromagnetic induction

    Hi all, Looking to measure some magnetic waves being generated at an electric coil. Freq is between 0-20kHz and magnitude is pretty small <1T. Any have suggestions for the best tool to measure and log data of this magnetic waveform? Googling around, I found meters like this: [Possible spam...
  12. SamuuLau

    I The effect of temperature on the damping of a guitar string

    I am a high school student and recently I have been working on a project about how temperature affects the frequency of a string emits. I have read blogs like https://www.physicsforums.com/threads/tension-and-frequency-with-change-in-temperature.833185/ and completed the part of thermal...
  13. T

    I Are voltage and current waves in transmission lines an artifice?

    The operation of a transmission line is based on the axial propagation of electromagnetic waves between the two line conductors. However, the study of the transmission lines does not focus on E and B waves but on voltage and current waves. It is considered that there are resistance...
  14. S

    I Can gravitational waves gain energy in an expanding FRW spacetime?

    I was reading this paper (*Green's functions for gravitational waves in FRW spacetimes:* [https://arxiv.org/abs/gr-qc/9309025](https://arxiv.org/abs/gr-qc/9309025)) and I had a specific question about one statement in the paper that I would like to ask: At page 6, the author says that...
  15. gasgas

    Ring Impedance & String Connection: Is It Valid?

    If we consider the coefficient b as the rings impedance, we can consider the effective impedance on the right to be b+Z2 where Z2 is the impedance of the second string. Then because there is no reflection it follows that Z1=b+Z2 or b=Z1-Z2. Is this a valid solution? My professor went through a...
  16. Z

    I Gravitational Waves from Vanishing Sun: What Happens?

    For some time I was wondering, what would happen if the Sun just disappeared like someone hit the delete button in Universal Sandbox. Specifically, what kind of gravitational waves will be produced in the wake of such an event? Would the law of conservation of Mass-Energy be miraculously...
  17. J

    Interference of radio waves

    The solution pretends that the ship is a two point source emitter, one h above the water, and one h below the water. The one below the water is out of phase by half a wavelength. I don't understand why then d sin θ = λ - wouldn't it be d sin θ = (1/2)λ since it is out of phase? Thank you.
  18. E

    Waves- sending a pulse across a weighted line

    Here is a picture of the problem: I honestly am pretty lost, I'm not looking for an answer, more so an idea to get me started. But here is what I was thinking: In the equation above I was trying to use: For U I am unsure how to incorporate the weight of the blocks into the u, so I am unsure...
  19. sinus

    I Question about Waves -- "frequency" versus "angular frequency"

    I've been reading many references that said "frequency" and "angular frequency" are two different things. I'm writing a report about damped oscillations experiments (that's a task from a subject in my college). Can someone tell me which one is the resonant frequency (natural frequency)? f or ω...
  20. S

    Trying to find old story: radio waves = angels carrying messages

    I wonder if anyone could help me identify a short story I read back in the 1960s. It might have been in an old (1950s) copy of Astounding Science Fiction magazine. I think the story involved a sea journey but the main thing I recall is that that radio wave communications was interpreted as...
  21. A

    B Doppler effect on electromagnetic waves in a car

    Is the doppler effect on electromagnetic waves receive by cell phone in fast car and so somebody talk with cell phone in fast car view this effect
  22. Ahmed1029

    Sonometers, tuning forks, and wave periodicity

    Summary: Cofnusion regarding waves on a sonometer band A tuning fork is used to determine the wave frequency of a sonometer(according to my understanding), so whay about pulse waves? Does a pulse have a wave frequency? Couldn't a pulse travel over the sonometer band that can be determined by a...
  23. Ira_anabelle

    Using Seismic Waves detected at 4 Seismometers to determine the Epicenter

    My first attempt was to work with the the difference in arrival times, but that didnt account for the focus to be under the epicenter. So I tried again in combination with the angle between the stations but have not arrived at a clear solution.
  24. A

    I The speed of a waves on a string in Simple harmonic motion

    The speed of a wave in simple harmonic motion on a string is $$v= \sqrt{\frac{F}{\mu}}$$ where v= the horizontal velocity of the wave on a string. Is the F the horizontal force or the resultant force (combination of Fy and Fx)?
  25. G

    B Understanding Waves, Particles and Probabilities

    In the ongoing quantum interpretations and foundations thread vanahees71 explained to me that the wave particle duality has been explained by the model where the position of a particle is calculated according to a probability distribution traveling in space. Am I understanding this...
  26. Ahmed1029

    I Wave number, frequency, and velocity in dispersive waves

    1) If I generate a dispersive wave, will it have well-defined constant wave number and frequency? Ones that don't change in time? 2) does the velocity of any point on the wave stay constant in time? 3) How does force interact with waves? Does a free wave act in analogy with free particles...
  27. Delta2

    I Sound waves in a fluid

    When we talk about sound waves in a fluid (air, water e.t.c.) we mean that the pressure ##P(x,y,z,t)## satisfies the wave equation, the so called velocity field of the fluid ##v(x,y,z,t)## satisfies the wave equation or both?
  28. A

    B What is the underlying phenomenon of waves?

    Heat diffusion is caused by randomly moving particles. So there is a connection between the diffusion equation and the statistical motion of particles. Is there something similar for waves?
  29. iQadmat

    Intensity of two sound pressure waves

  30. M

    I Constructive interference of harmonic electromagnetic waves

    Hello ! I have a doubt as to how is this case, if it occurs, of the constructive interference of two harmonic electromagnetic waves but of different wavelengths or frequencies between them. That is, if between the two electromagnetic waves a new and unique electromagnetic wave is created and...
  31. bbbl67

    I Do materials have a refractive index for radio waves?

    It's been stated that the index of refraction of materials varies with frequency throughout the EM spectrum. What are the index of refraction for various materials in the radio frequency?
  32. lindberg

    I Relativistic Velocity Addition: Calculating Electron Speed

    If we imagine launching an electron wave in a reference frame S with speed v, should someone viewing the electron from frame S1, which is in inertial motion referring to S, use the relativistic velocity addition to calculate the speed of the electron?
  33. Delta2

    B EM waves in vacuum analogy

    So, is water for water waves, what is the vacuum for EM waves traveling in vacuum. I know the analogy can't be exactly perfect because water molecules oscillate in the presence of water waves, but in vacuum nothing seems to oscillate? Or the vacuum oscillates in some way? And no I am not trying...
  34. M

    I Energy of Electromagnetic Waves in Destructive Interference

    Hello ! As we know by definition that: "Constructive interference occurs when the phase difference between the waves is an even multiple of π (180°), whereas destructive interference occurs when the difference is an odd multiple of π." But my question is in the case of destructive...
  35. Delta2

    I Are spherical transverse waves exact solutions to Maxwell's equations?

    In this paper in NASA https://www.giss.nasa.gov/staff/mmishchenko/publications/2004_kluwer_mishchenko.pdf it claims (at page 38) that the defined spherical waves (12.4,12.5) are solutions of Maxwell's equations in the limit ##kr\to\infty##. I tried to work out the divergence and curl of...
  36. wcivch

    B Ride Gravitational Waves to Increase Speed?

    This is my first post so I apologize if i am in error anywhere. I recently had a thought that I have had trouble confirming. Based on the following assumptions. 1.) As you accelerate an object near the speed of light it’s mass increases exponentially. 2.) Mass warps space time. 3.) Spacetime...
  37. A

    I Gravitational vs. Electromagnetic Waves: What's the Difference?

    in a nutshell what are the differences between gravitational and electromagnetic waves?
  38. G

    B Can electromagnetic waves traverse wormholes?

    Hello I'm new to this forum and interested in astrophysics and metaphysics. My first question here is if we can create nano sized wormholes to send information faster than light to other stars for example. We don't need to travel if we could send small satellites or even just radiowaves to the...
  39. BranRubaba

    I EM waves have no mass but they do have momentum?

    I was studying radiation and came across an article: https://www.wtamu.edu/~cbaird/sq/2014/04/01/light-has-no-mass-so-it-also-has-no-energy-according-to-einstein-but-how-can-sunlight-warm-the-earth-without-energy/#:~:text=In summary, all objects with,not the only massless object. Which said...
  40. L

    I Interference - two waves of different frequencies - beat velocity

    Hello, I'm considering the "beats" phenomena. I have two plane waves in some medium with a refractive index n(ω), one propagates in a z direction and second in a direction making an angle θ with z axis. Waves have frequencies ω1, ω2 (not necessarily equal) and k-vectors k1, k2 (not necessarily...
  41. Oldman too

    I Exploring Gravitational Waves with Earth-Lunar Orbital Perturbations

    Hello, This article caught my attention recently and I have several questions on the subject that I'd like to get opinions on. Before going further, I realize a technical discussion is way past the "I" tags range. Please adjust as necessary and thank you in advance. My attention was originally...
  42. V

    Why does a traveling wave pulse get distorted?

    I am getting confused by this question. Nevertheless, I tried answering this question. When I see the word pulse, it brings to my mind a pulse traveling in a rope as shown in diagram below and I cannot relate dispersion to the rope medium in which pulse is travelling. What I do know is that...
  43. samy4408

    B Question about electromagnetic waves -- Penetration vs. Frequency

    I read in a book that high frequency electromagnetic waves are more able to penetrate than low ones , so why radio waves can penetrate walls when light cannot?
  44. N

    I Curved space and gravitational waves

    Are gravitational waves purely temporal? An object with no spatial velocity experiences gravity due to temporal velocity?
  45. V

    Direction of of the velocity vector for particles in a sound wave

    Using the equations mentioned under this question, I came up with following analysis and directions of velocities on either side of ##x_1##. Also, I'm not sure if there is an easier qualitative way to know the velocity directions rather than do a detailed Calculus based analysis?
  46. V

    Reflection of sound wave in an open organ pipe

    I know that standing waves form in an open organ pipe. Since, standing waves can only form from superposition of original wave and reflected wave, so there must be a reflected wave in an open organ pipe. But I fail to understand how sound wave can reflect at the open end of organ pipe.
  47. A

    Facts about waves - UK BMAT exam question

    To me, they all look incorrect. Oh hang on. Ultrasonic waves. I misread that. It's no 6 then.
  48. V

    Direction of motion of points on a rope as a wave travels

    The second diagram is my attempt at the solution, in which the dotted part is the pulse in the rope a very small interval of time after ##t=0##. Point A should be at rest since we know wave is moving towards right and point A on the rope becomes a part of initial horizontal part of the string a...
  49. Dinarchik

    Alien spaceship wormhole gravitational waves detector

    Recently viewed video about wormholes that required negative energy to create it. Suppose hypothetical aliens have discovered this technology. Spaceship enters in first point and exit at second. To prevent spaceship destruction they might have technology to smooth gravitational waves on exit...