1. ### Can someone give me a better intuition of bandwidth?

Can someone give me a better intuition of bandwidth. The way I see it, is that the bandwidth is the range of frequencies which a signal/wave is allowed to have. This doesnt feel complete though. For example, how can I explain that TDMA, FDMA and CDMA are similar in this sense. As far as I know...
2. ### I How does a standing wave form?

I understand how waves undergo superposition. However, for a standing wave, the reflected wave is a mirror opposite of the incoming wave. By the superposition principle, won’t the 2 waves add up to 0, at all points?
3. ### Waves -- How does increasing tension affect frequency and period?

Using this stimulation: https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html It looks like frequency is decreasing as I increase tension but online it says frequency increases as tension does. Also, Im unsure about what happens to the Period
4. ### Harmonic motion and waves

Solutions in a file.
5. ### Max velocity of a vibrating loud speaker membrane given sound intensity

My attempt: p and T allows us to calculate ##Z=402 \frac{kg}{sm^2}## using ## Z=p*\sqrt(\frac{\gamma*M}{R*T})## . The sound intensity level at 10 meters allows us to calculate the intensity at 10 meters to be I=10^{-7} W/m^2 using ##50 = 10*log(I/I_0)##. Then, using the formula...
6. ### The general equation of the superposition of orthogonal waves?

hi guys i was trying to derive the general formula of two orthogonal waves $$x^{2}-2xycos(δ)+y^{2} = A^{2} sin(δ)^{2}$$ where the two waves are given by : $$x = Acos(ωt)$$ $$y = Acos(ωt+δ)$$ where ##δ## is the different in phase , i know it seems trivial but i am stuck on where should i begin...
7. ### I Reflection of inverted waves to form a standing wave

Standing waves in a string fixed at one end is formed by incoming and reflected waves. If reflected waves are 180° out of phase with incoming wave, how could they combine to give an oscillating wave? Shouldn't it be completely destructive interference all the time across the whole length of string?
8. ### Contradiction in Phase of reflected sound

While studying the fundamentals of sound waves in organ pipe, I noted that the fact about phase of reflected waves is contradicting while referring multiple sources This book of mine describes the reflection from a rigid surface/closed end to be in phase Whereas this one describes the...

23. ### B Question about wave interference and coherence

I have encountered the following definition of interference: Interference is a wave phenomenon in which two or more waves from coherent sources meet and superpose to form a resultant wave such that the amplitude of the resultant wave at any point is the vector sum of the amplitudes of the...
24. ### Find the Total Energy of the String

Steps that I've taken: First, compute the derivative of the psi-function with respect to time and then take the square of the result Second, input the result into the KE integration formula. All that is left is to find the integrand, however this is where calculations became really "messy". It...
25. ### I Visualization of fields in waveguides

Can someone provide me intuitive visualization of how E or H field can be longitudinal in a waveguide (TM/TE)? TEM is easy to visualize, but how EM wave can behave like sound in a waveguide (constant phase and amplitude plane in the same direction)? [Moderator: large bold font removed. In the...
26. ### I How do waves following a shockwave catch up to the shock wave?

I was in an argument about a jet engine and I was arguing that since there is a cutoff in terminology what would kill someone approaching a engine is not technically sound, but a shock wave, (I'm probably wrong about this, but that's not the question). That got me wondering how waves can catch...
27. ### A Simulating forward electromagnetic scattering for a dielectric

I want to simulate 2D TM scattered fields (microwave range) for austria profile. Austria profile has 2 circles beside each other of certain dielectric and one ring below the circles. So basically I have three dielectric objects in the domain of interest and also positions of Tx and Rx are known...
28. ### How to find the frequency of the second wave?

I don’t understand how to approach this. So I couldn’t make an attempt at a solution. Please help me understand better. Thank you in advance.
29. ### Seemingly simple Physics 2 wave question (third harmonic frequency)

I cannot find the correct answer anywhere online and the answer I keep getting is 5.4 (incorrect) Please show me the process to get to the answer! Thank you
30. ### Normal mode of an infinite spring pendulum system

First I worked out the dispersion relations, which is pretty easy: ##M \ddot x_j = K x_{j-1} + K x_{j+1} - 2K x_j -mg \frac {x_j} {l} ## (All t-derivatives) We know ##x_j## will be in the form ##Ae^{ijka}e^{-i\omega t}## so the above becomes: ## -\omega^2M = K (e^{-ika}+e^{ika}-2)-\frac {g}...