A Repeated measurements and granular space time

Heidi
Messages
420
Reaction score
40
Hi Pfs,
I would like to know if it would be possible for our known theories to derive
conservation laws if space time was really granular.
I think that entanglement is the only process which would succeed.
 
Physics news on Phys.org
Our known theories assume continuous spacetime. To derive something in granular spacetime we need models that have it built in. And we don't, at least not developed to the point where we can derive conservation laws.
 
  • Like
Likes Vanadium 50 and phinds
There was already a thread about this question not too long ago: https://www.physicsforums.com/threads/conservation-of-energy-in-quantum-gravity.1061153/

"Conservation laws" can mean many different things in gravity. The most conservative and well-understood of these, asymptotic boundary conservation laws, would apply just as well in quantum gravity, when you have asymptotic boundaries. Asymptotic boundaries are typically fixed boundary conditions in the gravitational path integral.

If you are asking about quasi-local conservation laws then the situation is more complicated as it is not clear how to specify subregions in quantum gravity. But it would be surprising if some form of conservation laws didn't hold. If you have no asymptotic boundaries and you aren't fixing some bulk subregion in the gravity path integral (which again is poorly understood) then you just have the pure gravitational constraints.
 
Would it be possible that severall conservation laws could be explained by the fact
that we have processes vhich do not depend on space or time?
Entanglement seems to be not local.
Take the the Foucault's pendulum. It oscillates in a plane that does not depend on
the rotarion of the earth, the position of the sun or other stars. It only depends on
the initial choice , not on far objects.
 
Heidi said:
Would it be possible

Everything is possible and nothing is possible if we don't have any concrete model at hand.

Heidi said:
Take the the Foucault's pendulum. It oscillates in a plane that does not depend on
the rotarion of the earth

In Earths frame of reference it surely does depend on its rotation.
 
Last edited:
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top