MHB Repeated roots, non homogeneous - second order, reduction of order method

shorty1
Messages
16
Reaction score
0
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance
 
Physics news on Phys.org
shorty said:
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance

Let's start from the homogeneous DE...

$\displaystyle y^{\ ''} - 4 y^{\ '} +4\ y=0$ (1)

You have found that $\displaystyle u(x)=e^{2 x}$ is a solution of (1) and that is correct. Now a general procedure to find another solution $v(x)$ of (1) independent from $u(x)$ is illustrated in...

http://www.mathhelpboards.com/showthread.php?605-Real-double-roots-question&p=3605#post3605

Kind regards

$\chi$ $\sigma$
 
shorty said:
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance

1. The roots are +2.

2.

\(y=e^{2x}v(x)\)

\(y'=2e^{2x}v(x)+e^{2x}v'(x)\)

\(y''=4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)\)

Now putting these into the equation we get:

\( [4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)] -4[2e^{2x}v(x)+e^{2x}v'(x)] +4[e^{2x}v(x)]=e^{x}\)

which reduces to:

\(v''(x)=e^{-x}\)


CB
 
Thank you,

one more thing: what do you do with the constant of integration when forming the general solution?

I have $$ y = C_1 e^{2x} c_2 e^{-x} $$ as my general solution. what should i have done with the Constant of integration?
CaptainBlack said:
1. The roots are +2.

2.

\(y=e^{2x}v(x)\)

\(y'=2e^{2x}v(x)+e^{2x}v'(x)\)

\(y''=4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)\)

Now putting these into the equation we get:

\( [4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)] -4[2e^{2x}v(x)+e^{2x}v'(x)] +4[e^{2x}v(x)]=e^{x}\)

which reduces to:

\(v''(x)=e^{-x}\)


CB
 
shorty said:
Thank you,

one more thing: what do you do with the constant of integration when forming the general solution?

I have $$ y = C_1 e^{2x} c_2 e^{-x} $$ as my general solution. what should i have done with the Constant of integration?

From \(v''(x)=e^{-x} \) you get \(v(x)=e^{-x}+(ax+b)\) which when recombined with \(e^{2x}\) gives a general solution: \[y(x)=e^{2x}[e^{-x}+ax+b)]=e^x+axe^{2x}+be^{2x}\]

The first term on the right is a particular integral and the remaining two terms are the general solution to the homogeneous equation.

CB
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top