Repeated roots, non homogeneous - second order, reduction of order method

Click For Summary
SUMMARY

The discussion focuses on solving the second-order differential equation \(y'' - 4y' + 4y = e^x\) using the reduction of order method. The roots of the associated homogeneous equation are found to be repeated at \(r = 2\). The correct approach involves letting \(y_1 = e^{2x}\) and substituting \(y = y_1 v(x)\) into the equation, leading to the simplified equation \(v''(x) = e^{-x}\). The general solution is then expressed as \(y(x) = e^{2x}(e^{-x} + ax + b)\), where \(a\) and \(b\) are constants.

PREREQUISITES
  • Understanding of second-order differential equations
  • Familiarity with the reduction of order method
  • Knowledge of homogeneous and particular solutions
  • Basic calculus, including differentiation and integration
NEXT STEPS
  • Study the method of reduction of order in detail
  • Learn how to solve non-homogeneous differential equations
  • Explore the concept of particular integrals in differential equations
  • Practice solving second-order differential equations with repeated roots
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with differential equations, particularly those dealing with second-order equations and the reduction of order method.

shorty1
Messages
16
Reaction score
0
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance
 
Physics news on Phys.org
shorty said:
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance

Let's start from the homogeneous DE...

$\displaystyle y^{\ ''} - 4 y^{\ '} +4\ y=0$ (1)

You have found that $\displaystyle u(x)=e^{2 x}$ is a solution of (1) and that is correct. Now a general procedure to find another solution $v(x)$ of (1) independent from $u(x)$ is illustrated in...

http://www.mathhelpboards.com/showthread.php?605-Real-double-roots-question&p=3605#post3605

Kind regards

$\chi$ $\sigma$
 
shorty said:
I semi understand the reduction of order method, and i understand the general solution for a 2nd order with repeated roots. however, i can't seem to form up the correct thing to solve this question, and research again proves futile. Any assistance will be appreciated.

Use the method of reduction of order to solve

y'' - 4y' + 4y = ex


when i do the auxiliary i get my roots to be -2, repeated. but from there i am not sure how to go on. i tried letting y1 = e2x and letting y = y1 v(x), and found y' and y'' to substitute back in the original equation to equate the coefficients, but that didn't work. I am now confused.

thanks for your assistance

1. The roots are +2.

2.

\(y=e^{2x}v(x)\)

\(y'=2e^{2x}v(x)+e^{2x}v'(x)\)

\(y''=4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)\)

Now putting these into the equation we get:

\( [4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)] -4[2e^{2x}v(x)+e^{2x}v'(x)] +4[e^{2x}v(x)]=e^{x}\)

which reduces to:

\(v''(x)=e^{-x}\)


CB
 
Thank you,

one more thing: what do you do with the constant of integration when forming the general solution?

I have $$ y = C_1 e^{2x} c_2 e^{-x} $$ as my general solution. what should i have done with the Constant of integration?
CaptainBlack said:
1. The roots are +2.

2.

\(y=e^{2x}v(x)\)

\(y'=2e^{2x}v(x)+e^{2x}v'(x)\)

\(y''=4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)\)

Now putting these into the equation we get:

\( [4e^{2x}v(x)+4e^{2x}v'(x)+e^{2x}v''(x)] -4[2e^{2x}v(x)+e^{2x}v'(x)] +4[e^{2x}v(x)]=e^{x}\)

which reduces to:

\(v''(x)=e^{-x}\)


CB
 
shorty said:
Thank you,

one more thing: what do you do with the constant of integration when forming the general solution?

I have $$ y = C_1 e^{2x} c_2 e^{-x} $$ as my general solution. what should i have done with the Constant of integration?

From \(v''(x)=e^{-x} \) you get \(v(x)=e^{-x}+(ax+b)\) which when recombined with \(e^{2x}\) gives a general solution: \[y(x)=e^{2x}[e^{-x}+ax+b)]=e^x+axe^{2x}+be^{2x}\]

The first term on the right is a particular integral and the remaining two terms are the general solution to the homogeneous equation.

CB
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
471
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K