MHB Repeating decimals (sic) in bases other than 10

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Bases
Dustinsfl
Messages
2,217
Reaction score
5
Prove that $.0222\ldots$ (base 3) $= .1$ (base 3) $= \frac{1}{3}$ (base 10).First, we will show $.0222\ldots$ (base 3) $= \frac{1}{3}$ (base 10).
\begin{alignat*}{3}
2\left(\frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \cdots\right) & = & 2\sum_{n = 2}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\sum_{n = 0}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\frac{1}{1 - \frac{1}{3}}\\
& = & \frac{1}{3}
\end{alignat*}

I am having trouble with the second part.
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: base 3

This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$
 
Re: base 3

MarkFL said:
This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$

Your purported proof is invalid in any base in that it applies rules valid for finite series to infinite series without justifying their validity.

CB
 
How I solved it was with the fact that 3 in base 3 is 10.
$$
\frac{1}{10} = .1
$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top