MHB Repeating decimals (sic) in bases other than 10

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Bases
Click For Summary
The discussion focuses on proving that the repeating decimal $.0222\ldots$ in base 3 is equivalent to $.1$ in base 3 and equals $\frac{1}{3}$ in base 10. The initial proof demonstrates this by expressing the repeating decimal as an infinite series and simplifying it to show it equals $\frac{1}{3}$. Another participant introduces a method using the property of repeating decimals, comparing it to the base 10 example of $0.\bar{9}=1$. A critique is raised regarding the validity of applying finite series rules to infinite series without proper justification. The conversation emphasizes the mathematical relationships between different bases and the nature of repeating decimals.
Dustinsfl
Messages
2,217
Reaction score
5
Prove that $.0222\ldots$ (base 3) $= .1$ (base 3) $= \frac{1}{3}$ (base 10).First, we will show $.0222\ldots$ (base 3) $= \frac{1}{3}$ (base 10).
\begin{alignat*}{3}
2\left(\frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \cdots\right) & = & 2\sum_{n = 2}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\sum_{n = 0}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\frac{1}{1 - \frac{1}{3}}\\
& = & \frac{1}{3}
\end{alignat*}

I am having trouble with the second part.
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: base 3

This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$
 
Re: base 3

MarkFL said:
This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$

Your purported proof is invalid in any base in that it applies rules valid for finite series to infinite series without justifying their validity.

CB
 
How I solved it was with the fact that 3 in base 3 is 10.
$$
\frac{1}{10} = .1
$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
11K