MHB Repeating decimals (sic) in bases other than 10

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Bases
AI Thread Summary
The discussion focuses on proving that the repeating decimal $.0222\ldots$ in base 3 is equivalent to $.1$ in base 3 and equals $\frac{1}{3}$ in base 10. The initial proof demonstrates this by expressing the repeating decimal as an infinite series and simplifying it to show it equals $\frac{1}{3}$. Another participant introduces a method using the property of repeating decimals, comparing it to the base 10 example of $0.\bar{9}=1$. A critique is raised regarding the validity of applying finite series rules to infinite series without proper justification. The conversation emphasizes the mathematical relationships between different bases and the nature of repeating decimals.
Dustinsfl
Messages
2,217
Reaction score
5
Prove that $.0222\ldots$ (base 3) $= .1$ (base 3) $= \frac{1}{3}$ (base 10).First, we will show $.0222\ldots$ (base 3) $= \frac{1}{3}$ (base 10).
\begin{alignat*}{3}
2\left(\frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \cdots\right) & = & 2\sum_{n = 2}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\sum_{n = 0}^{\infty}\left(\frac{1}{3}\right)^n\\
& = & \frac{2}{9}\frac{1}{1 - \frac{1}{3}}\\
& = & \frac{1}{3}
\end{alignat*}

I am having trouble with the second part.
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: base 3

This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$
 
Re: base 3

MarkFL said:
This may not be what you have in mind, but this puts me in mind of a simple proof in base 10 that:

$\displaystyle 0.\bar{9}=1$

So, we have in base 3 (trinary):

$\displaystyle x=0.0\bar{2}$

Multiply by 3 in trinary:

$\displaystyle 10x=0.\bar{2}=0.2+x$

$\displaystyle 2x=0.2$

$\displaystyle x=0.1$

Your purported proof is invalid in any base in that it applies rules valid for finite series to infinite series without justifying their validity.

CB
 
How I solved it was with the fact that 3 in base 3 is 10.
$$
\frac{1}{10} = .1
$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top