Graduate Representation of Z2 acting on wavefunctions

Click For Summary
A wavefunction invariant under the group Z2 indicates specific symmetries, which can be represented by different operators, such as the identity and parity operators. The choice between representations, like Z2^A and Z2^B, depends on the symmetry being described; Z2^A corresponds to spatial reflections, while Z2^B combines spatial reflection with a spin flip. The context is crucial when discussing broader symmetries like SU(3), as it can refer to various physical scenarios, including the symmetry of harmonic oscillators or aspects of quantum chromodynamics (QCD). Simply stating a symmetry group does not convey the underlying physics, as the significance lies in how the representation is realized in quantum mechanics. Understanding these distinctions is essential for accurately interpreting wavefunction invariance and symmetry in quantum systems.
QFT1995
Messages
29
Reaction score
1
If I have a wavefunction ##\Psi(X)## that is invariant under the group ##Z_2##, what specifically does that mean? There can be several operators that are representations of the group ##Z_2##, for example the operators

$$\mathbb{Z}_2=\{ \mathbb{I}, -\mathbb{I} \},$$
or
$$\mathbb{Z}_2=\{ \mathbb{I}, \hat{\Pi} \},$$
where ##\hat{\Pi}## is the parity operators with the action ##\hat{\Pi}: \Psi(X) \mapsto \Psi(-X)##. My question is, which one is it? Also, say if I have the 2 component wave-function, the following also produce a representation of ##Z_2##
$$
\mathbb{Z}_2^A=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
\hat{\Pi} & 0\\
0& \hat{\Pi}
\end{pmatrix} \bigg\},
$$
or
$$
\mathbb{Z}_2^B=\bigg\{\mathbb{I},\;\;\begin{pmatrix}
0 & \hat{\Pi}\\
\hat{\Pi}&0
\end{pmatrix} \bigg\}.
$$
My question is, how do you determine which one is correct when people state that the wavefunction is invariant under ##Z_2## since a wavfunction invariant under ##Z_2^A## isn't necessarily invariant under ##Z_2^B##, however they are both representations of ##Z_2##.
 
Physics news on Phys.org
It depends upon which symmetry you want to describe. The symmetry group ##\{\mathbb{I},\hat{\Pi} \}## describes symmetry under spatial reflections. For your spin-1/2 example ##\mathbb{Z}_2^A## is also a usual spatial reflection, while ##\mathbb{A}_2^B## is a spatial reflection combined with a spin flip.
 
Okay, but people say things like, the theory is invariant under SU(3) yet they provide no extra details. What is usually meant by that?
 
Of course, you must get the context. SU(3) can mean a lot of things. E.g., the symmetry group of the 3D symmetric harmonic oscillator is SU(3), i.e., there's a set of combinations of annihilation and creation operators that build an su(3) Lie algebra representation.

It could also be an approximate chiral flavor symmetry of QCD with 3 quarks (u, d, s).

Or it's the (exact) local gauge group of QCD with the quarks and antiquark states transforming according to the two fundamental irreducible representations of SU(3).

As I said before, just telling the group of a symmetry doesn't necessarily tell you the physics behind it. More precisely in quantum physics you deal with unitary (ray) representations of groups. The physical meaning is given by how the representation is realized.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
14
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K