- #1
shinobi20
- 280
- 20
- TL;DR Summary
- The fundamental and adjoint are different representations of the algebra, but I would like to see how they're different through an explicit example, say ##SO(4)##. I'm using the group theory book by A. Zee and I'd like to clarify some issues with the concepts through the calculations as presented by the author.
I have some clarifications on the discussion of adjoint representation in Group Theory by A. Zee, specifically section IV.1 (beware of some minor typos like negative signs).
An antisymmetric tensor ##T^{ij}## with indices ##i,j = 1, \ldots,N## in the fundamental representation is ##N##-dimensional. On the other hand, we also know that ##T^{ij}## in ##SO(N)## furnishes a ##\frac{1}{2}N(N-1)##-dimensional irreducible representation. In addition, the number of generators in ##SO(N)## is ##\frac{1}{2} N(N-1)## with the generators being ##N##-dimensional in the fundamental representation.
Punchline: We can also regard ##T^{ij}## as an ##N \times N## matrix which can be written as linear combinations of the generators ##\mathcal{J}_a## with coefficients ##A_a## where ##a = 1, \ldots \frac{1}{2}N(N-1)##.
$$\begin{equation}
T^{ij} = \sum_{a=1}^{\frac{1}{2}N(N-1)} A_a \mathcal{J}_a^{ij}\tag{1}
\end{equation}$$
where for the generators ##\mathcal{J}_a^{ij}##, the index ##a## tells us which generator we are talking about and the indices ##(ij)## indicate the matrix element of a given generator.
It's also discussed that the structure constant ##f_{abc}## furnishes the adjoint representation given by,
$$\begin{equation}
(J_{a})_{bc} = -i f_{abc}\tag{2}
\end{equation}$$
where ##J = -i \mathcal{J}## in the physicist's notation, i.e. Hermitian generators, so that ##(\mathcal{J}_a)_{bc} = f_{abc}##.
Since ##a,b,c = 1, \ldots \frac{1}{2}N(N-1)##, the adjoint representation is ##\frac{1}{2}N(N-1)##-dimensional.
Question 1. I want to clarify (due to the wording of Zee that "We can also regard ##T^{ij}## as an ##N \times N## matrix ...") if the point here is to compare and contrast the fundamental representation which is ##N##-dimensional VERSUS adjoint representation which is ##\frac{1}{2}N(N-1)##-dimensional?
Question 2. An antisymmetric tensor ##T^{ij}## in the fundamental representation is ##N##-dimensional, so it acts on ##N##-dimensional vectors. On the other hand, we can express ##T^{ij}## as a linear combination of ##\mathcal{J}_a##s with ##\frac{1}{2}N(N-1)## coefficients ##A_a## so that we can form an ##\frac{1}{2}N(N-1)##-dimensional vector whose components are the ##A_a##s in the ##\mathcal{J}_a## basis. Is this correct?
Question 3. How do we form this vector with components ##A_a##?
I refuse to use SO(3) since it can't demonstrate clearly the difference between the fundamental and adjoint since for ##N=3##, ##N = \frac{1}{2}N(N-1)##. So, for ##N=4##,
Fundamental representation
$$T^{ij} = \begin{bmatrix} 0 & T^{12} & T^{13} & T^{14} \\\ x & 0 & T^{23} & T^{24} \\\ x & x & 0 & T^{34} \\\ x & x & x & 0 \end{bmatrix}\tag{3}$$
where I only wrote the ##\frac{1}{2}N(N-1) = 6## independent components. This implies that the vector is ##4##-dimensional in the fundamental representation.
Adjoint representation
$$\begin{equation}
T^{12} = \sum_{a=1}^{6} A_a \mathcal{J}_a^{12} = A_1 \mathcal{J}_1^{12} + A_2 \mathcal{J}_2^{12} + A_3 \mathcal{J}_3^{12} + A_4 \mathcal{J}_4^{12} + A_5 \mathcal{J}_5^{12} + A_6 \mathcal{J}_6^{12}\tag{4}
\end{equation}$$
$$\begin{bmatrix} T^{12} \\\ T^{13} \\\ T^{14} \\\ T^{23} \\\ T^{24} \\\ T^{34} \end{bmatrix} = \begin{bmatrix} \mathcal{J}_1^{12} & \mathcal{J}_2^{12} & \mathcal{J}_3^{12} & \mathcal{J}_4^{12} & \mathcal{J}_5^{12} & \mathcal{J}_6^{12} \\\ \mathcal{J}_1^{13} & \mathcal{J}_2^{13} & \mathcal{J}_3^{13} & \mathcal{J}_4^{13} & \mathcal{J}_5^{13} & \mathcal{J}_6^{13} \\\ \mathcal{J}_1^{14} & \mathcal{J}_2^{14} & \mathcal{J}_3^{14} & \mathcal{J}_4^{14} & \mathcal{J}_5^{14} & \mathcal{J}_6^{14} \\\ \mathcal{J}_1^{23} & \mathcal{J}_2^{23} & \mathcal{J}_3^{23} & \mathcal{J}_4^{23} & \mathcal{J}_5^{23} & \mathcal{J}_6^{23} \\\ \mathcal{J}_1^{24} & \mathcal{J}_2^{24} & \mathcal{J}_3^{24} & \mathcal{J}_4^{24} & \mathcal{J}_5^{24} & \mathcal{J}_6^{24} \\\ \mathcal{J}_1^{34} & \mathcal{J}_2^{34} & \mathcal{J}_3^{34} & \mathcal{J}_4^{34} & \mathcal{J}_5^{34} & \mathcal{J}_6^{34} \end{bmatrix} \begin{bmatrix} A_1 \\\ A_2 \\\ A_3 \\\ A_4 \\\ A_5 \\\ A_6 \end{bmatrix}\tag{5}$$
This implies that the vector is ##6##-dimensional in the adjoint representation. Thus, ##T^{ij}## and ##A_a## are the same thing expressed in different bases.
Am I correct that this is what is meant?
Question 4. Regardless of whether the construction in question 3 is correct or not, there seems to be something wrong with how eq.##(1)## is done for ##N=4##. In eq.##(1)##, ##\mathcal{J}_a^{ij}## has indices ##a## which runs until ##\frac{1}{2}N(N-1)## while ##(ij)## runs until ##N##. To interpret the ##6##-dimensional matrix in question 3 as ##(\mathcal{J}_a)_{bc} = f_{abc}## where ##(bc)## are the indices that indicate the matrix components and acts like ##(ij)## in eq.##(1)##, there would be an issue since ##(bc)## should run until ##\frac{1}{2}N(N-1)##. Of course, for ##N=3## there's no issue since ##N=\frac{1}{2}N(N-1)## but that's a coincidence. So it seems like the matrix construction in question 3 may be wrong?
12
Moderator's Note: This has been moved from 'Linear Algebra' to 'Quantum Mechanics' for
An antisymmetric tensor ##T^{ij}## with indices ##i,j = 1, \ldots,N## in the fundamental representation is ##N##-dimensional. On the other hand, we also know that ##T^{ij}## in ##SO(N)## furnishes a ##\frac{1}{2}N(N-1)##-dimensional irreducible representation. In addition, the number of generators in ##SO(N)## is ##\frac{1}{2} N(N-1)## with the generators being ##N##-dimensional in the fundamental representation.
Punchline: We can also regard ##T^{ij}## as an ##N \times N## matrix which can be written as linear combinations of the generators ##\mathcal{J}_a## with coefficients ##A_a## where ##a = 1, \ldots \frac{1}{2}N(N-1)##.
$$\begin{equation}
T^{ij} = \sum_{a=1}^{\frac{1}{2}N(N-1)} A_a \mathcal{J}_a^{ij}\tag{1}
\end{equation}$$
where for the generators ##\mathcal{J}_a^{ij}##, the index ##a## tells us which generator we are talking about and the indices ##(ij)## indicate the matrix element of a given generator.
It's also discussed that the structure constant ##f_{abc}## furnishes the adjoint representation given by,
$$\begin{equation}
(J_{a})_{bc} = -i f_{abc}\tag{2}
\end{equation}$$
where ##J = -i \mathcal{J}## in the physicist's notation, i.e. Hermitian generators, so that ##(\mathcal{J}_a)_{bc} = f_{abc}##.
Since ##a,b,c = 1, \ldots \frac{1}{2}N(N-1)##, the adjoint representation is ##\frac{1}{2}N(N-1)##-dimensional.
Question 1. I want to clarify (due to the wording of Zee that "We can also regard ##T^{ij}## as an ##N \times N## matrix ...") if the point here is to compare and contrast the fundamental representation which is ##N##-dimensional VERSUS adjoint representation which is ##\frac{1}{2}N(N-1)##-dimensional?
Question 2. An antisymmetric tensor ##T^{ij}## in the fundamental representation is ##N##-dimensional, so it acts on ##N##-dimensional vectors. On the other hand, we can express ##T^{ij}## as a linear combination of ##\mathcal{J}_a##s with ##\frac{1}{2}N(N-1)## coefficients ##A_a## so that we can form an ##\frac{1}{2}N(N-1)##-dimensional vector whose components are the ##A_a##s in the ##\mathcal{J}_a## basis. Is this correct?
Question 3. How do we form this vector with components ##A_a##?
I refuse to use SO(3) since it can't demonstrate clearly the difference between the fundamental and adjoint since for ##N=3##, ##N = \frac{1}{2}N(N-1)##. So, for ##N=4##,
Fundamental representation
$$T^{ij} = \begin{bmatrix} 0 & T^{12} & T^{13} & T^{14} \\\ x & 0 & T^{23} & T^{24} \\\ x & x & 0 & T^{34} \\\ x & x & x & 0 \end{bmatrix}\tag{3}$$
where I only wrote the ##\frac{1}{2}N(N-1) = 6## independent components. This implies that the vector is ##4##-dimensional in the fundamental representation.
Adjoint representation
$$\begin{equation}
T^{12} = \sum_{a=1}^{6} A_a \mathcal{J}_a^{12} = A_1 \mathcal{J}_1^{12} + A_2 \mathcal{J}_2^{12} + A_3 \mathcal{J}_3^{12} + A_4 \mathcal{J}_4^{12} + A_5 \mathcal{J}_5^{12} + A_6 \mathcal{J}_6^{12}\tag{4}
\end{equation}$$
$$\begin{bmatrix} T^{12} \\\ T^{13} \\\ T^{14} \\\ T^{23} \\\ T^{24} \\\ T^{34} \end{bmatrix} = \begin{bmatrix} \mathcal{J}_1^{12} & \mathcal{J}_2^{12} & \mathcal{J}_3^{12} & \mathcal{J}_4^{12} & \mathcal{J}_5^{12} & \mathcal{J}_6^{12} \\\ \mathcal{J}_1^{13} & \mathcal{J}_2^{13} & \mathcal{J}_3^{13} & \mathcal{J}_4^{13} & \mathcal{J}_5^{13} & \mathcal{J}_6^{13} \\\ \mathcal{J}_1^{14} & \mathcal{J}_2^{14} & \mathcal{J}_3^{14} & \mathcal{J}_4^{14} & \mathcal{J}_5^{14} & \mathcal{J}_6^{14} \\\ \mathcal{J}_1^{23} & \mathcal{J}_2^{23} & \mathcal{J}_3^{23} & \mathcal{J}_4^{23} & \mathcal{J}_5^{23} & \mathcal{J}_6^{23} \\\ \mathcal{J}_1^{24} & \mathcal{J}_2^{24} & \mathcal{J}_3^{24} & \mathcal{J}_4^{24} & \mathcal{J}_5^{24} & \mathcal{J}_6^{24} \\\ \mathcal{J}_1^{34} & \mathcal{J}_2^{34} & \mathcal{J}_3^{34} & \mathcal{J}_4^{34} & \mathcal{J}_5^{34} & \mathcal{J}_6^{34} \end{bmatrix} \begin{bmatrix} A_1 \\\ A_2 \\\ A_3 \\\ A_4 \\\ A_5 \\\ A_6 \end{bmatrix}\tag{5}$$
This implies that the vector is ##6##-dimensional in the adjoint representation. Thus, ##T^{ij}## and ##A_a## are the same thing expressed in different bases.
Am I correct that this is what is meant?
Question 4. Regardless of whether the construction in question 3 is correct or not, there seems to be something wrong with how eq.##(1)## is done for ##N=4##. In eq.##(1)##, ##\mathcal{J}_a^{ij}## has indices ##a## which runs until ##\frac{1}{2}N(N-1)## while ##(ij)## runs until ##N##. To interpret the ##6##-dimensional matrix in question 3 as ##(\mathcal{J}_a)_{bc} = f_{abc}## where ##(bc)## are the indices that indicate the matrix components and acts like ##(ij)## in eq.##(1)##, there would be an issue since ##(bc)## should run until ##\frac{1}{2}N(N-1)##. Of course, for ##N=3## there's no issue since ##N=\frac{1}{2}N(N-1)## but that's a coincidence. So it seems like the matrix construction in question 3 may be wrong?
12
Moderator's Note: This has been moved from 'Linear Algebra' to 'Quantum Mechanics' for
- it received no answers in 'LA'.
- is clearly phrased in the language of physics. Wide parts of it don't make mathematical sense. E.g. it is not clear whether we talk about group representations, in which case tensors don't make much sense, or Lie algebra representations, in which case tensors should be specifically defined to avoid confusion. Either form of representation is a homomorphism in the corresponding category, not a tensor.
- the user provided a link as a possible answer to that specific use of language, but I had to remove it for copyright reasons.
Last edited by a moderator: