- #1
LagrangeEuler
- 717
- 22
Matrix representation of a finite group G is irreducible representation if
[tex]\sum^n_{i=1}|\chi_i|^2=|G|[/tex].
Representation is reducible if
[tex]\sum^n_{i=1}|\chi_i|^2>|G|[/tex].
What if
[tex]\sum^n_{i=1}|\chi_i|^2<|G|[/tex].
Are then multiplication of matrices form a group? If yes what we can say from ##\sum^n_{i=1}|\chi_i|^2<|G|##. ##\chi_i## are characters (traces of matrices).
[tex]\sum^n_{i=1}|\chi_i|^2=|G|[/tex].
Representation is reducible if
[tex]\sum^n_{i=1}|\chi_i|^2>|G|[/tex].
What if
[tex]\sum^n_{i=1}|\chi_i|^2<|G|[/tex].
Are then multiplication of matrices form a group? If yes what we can say from ##\sum^n_{i=1}|\chi_i|^2<|G|##. ##\chi_i## are characters (traces of matrices).