MHB Residue Theorem: Find Residue at 0 for e^z/z^3

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Residue Theorem
Dustinsfl
Messages
2,217
Reaction score
5
I have read the chapter on Residue Theorem in Complex Analysis by Serge Lang but don't quite understand how to do the problems.

Can someone walk me through the problem (see below) so I can see a better example?

Find the residue at 0 for
$$
\frac{e^z}{z^3}
$$

I see we have pole of order 3 at zero.
Do we start by writing the Laurent series?
 
Physics news on Phys.org
Laurent series is one way, yes. In this case, do \( \frac{1}{z^3} \cdot e^z \) and expand \( e^z \) so we have $$ f(z) = \frac{1}{z^3} \cdot \sum_{n=0}^{\infty} \frac{z^n}{n!} \implies f(z) = \sum_{n=0}^{\infty} \frac{z^{n-3}}{n!}.$$ The coefficient of \( \frac{1}{z} \) is the residue. There are other ways though.
 
Fantini said:
The coefficient of \( \frac{1}{z} \) is the residue. There are other ways though.

What do you mean by this?

so $\dfrac{1}{2}$?
 
Last edited:
Yes, the residue in this case would be \( \frac{1}{2} \). When it's easy to do so, expanding in Laurent series and finding the coefficient is a good method.

By using partial fractions you can also use Cauchy's formula for each, as another way.
 
Last edited:
Another way to get the same thing: if f(z) has a pole of order n at $z_0$ then it can be written as a Laurent series: $f(z)= a_{-n}(z-z_0)^{-n}+ \cdot\cdot\cdot+ a_{-1}(z- z_0)^{-1}k+ a_0+ a_1(z- z_0)+ \cdot\cdot\cdot$. Of course, that means that $(z- z_0)^nf(z)= a_{-n}a+ \cdot\cdot\cdot+ a_{-1}z^{n-1}+ a_0(z- z_0)^n+ a_1(z- z_0)^{n-1}+ \cdot\cdot\cdot$, analytic at $z= z_0$.

That is, $a_{-1}$ is the coefficient of $(z- z_0)^{n-1}$ in the Taylor's series expansion of $(z-z_0)^nf(z)$. Of course, that is $\frac{1}{(n-1)!}\frac{d^{n-1}(z-z_0)^nf(z)}{dz^{n-1}}$.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
7
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
Replies
13
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K