MHB Rewrite the following sentence as a formal proposition.

  • Thread starter Thread starter Henry R
  • Start date Start date
Click For Summary
The discussion focuses on rewriting a complex conditional statement about eating fruits as a formal proposition. The original statement involves three variables: eating apples (G), durians (B), and rambutans (P), with specific conditions linking them. A proposed formal representation is given as $$(G\to \neg B) \land (B\to \neg P) \land (P\to \neg G) \land (G\lor B\lor P).$$ This formulation captures the relationships and exclusions among the three fruits while ensuring that at least one is consumed. The conversation emphasizes clarity in translating informal language into formal logical expressions.
Henry R
Messages
25
Reaction score
0
I have a question here. I hope I'm not doing anything wrong here. So, we go!

"If I eat apples, then I will not eat durian, and if I eat durians, then I will not eat rambutans, and if I eat rambutans, then I will not eat apples, but I will surely eat either apples, durians or rambutans."

Let G =" I eat apples" , B ="I eat durians" , P = "I eat rambutans".

I have to rewrite the sentences as a formal proposition. Can you guys give your opinion on how to solve this?
 
Physics news on Phys.org
Henry R said:
I have a question here. I hope I'm not doing anything wrong here. So, we go!

"If I eat apples, then I will not eat durian, and if I eat durians, then I will not eat rambutans, and if I eat rambutans, then I will not eat apples, but I will surely eat either apples, durians or rambutans."

Let G =" I eat apples" , B ="I eat durians" , P = "I eat rambutans".

I have to rewrite the sentences as a formal proposition. Can you guys give your opinion on how to solve this?

I would go with the following:
$$(G\to \neg B) \land (B\to \neg P) \land (P\to \neg G) \land (G\lor B\lor P).$$
 
Ackbach said:
I would go with the following:
$$(G\to \neg B) \land (B\to \neg P) \land (P\to \neg G) \land (G\lor B\lor P).$$

Good!
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
22
Views
4K