MHB Rewrite the following sentence as a formal proposition.

  • Thread starter Thread starter Henry R
  • Start date Start date
Henry R
Messages
25
Reaction score
0
I have a question here. I hope I'm not doing anything wrong here. So, we go!

"If I eat apples, then I will not eat durian, and if I eat durians, then I will not eat rambutans, and if I eat rambutans, then I will not eat apples, but I will surely eat either apples, durians or rambutans."

Let G =" I eat apples" , B ="I eat durians" , P = "I eat rambutans".

I have to rewrite the sentences as a formal proposition. Can you guys give your opinion on how to solve this?
 
Physics news on Phys.org
Henry R said:
I have a question here. I hope I'm not doing anything wrong here. So, we go!

"If I eat apples, then I will not eat durian, and if I eat durians, then I will not eat rambutans, and if I eat rambutans, then I will not eat apples, but I will surely eat either apples, durians or rambutans."

Let G =" I eat apples" , B ="I eat durians" , P = "I eat rambutans".

I have to rewrite the sentences as a formal proposition. Can you guys give your opinion on how to solve this?

I would go with the following:
$$(G\to \neg B) \land (B\to \neg P) \land (P\to \neg G) \land (G\lor B\lor P).$$
 
Ackbach said:
I would go with the following:
$$(G\to \neg B) \land (B\to \neg P) \land (P\to \neg G) \land (G\lor B\lor P).$$

Good!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top