Hello, NavalMonte!
It would have been considerate to give us the original problem.
I'm forced to
guess what you are asking.
I was asked to rewrite the limit as a derivative:
$$\lim_{h\to0} \dfrac{\sec(\pi + h) + 1}{h}$$
I wager that the problem said:
. . \text{Given: }\:f(x) \,=\,\sec x
. . \text{Find }f'(x)\text{ at }x = \pi\text{ by definition.}\frac{f(\pi+h) - f(x)}{h} \;=\;\frac{\sec(\pi+h) - \sec(\pi)}{h}
. . . =\;\frac{\sec(\pi+h) - (-1)}{h} \;=\;\frac{\sec(\pi+h) + 1}{h}
Note that: .\sec(\pi+h) \:=\:\frac{1}{\cos(\pi+h)} \:=\:\frac{1}{-\cos h}
We have: .\frac{-\frac{1}{\cos h} +1}{h} \:=\:\frac{-1 + \cos h}{h\cos h} \:=\:-\frac{1-\cos h}{h\cos h}
Multiply by \frac{1+\cos h}{1+\cos h}\!:\;-\frac{1-\cos h}{h\cos h}\cdot\frac{1+\cos h}{1+\cos h}
. . . =\;-\frac{1-\cos^2h}{h\cos h(1+\cos h)} \;=\;-\frac{\sin^2h}{h\cos h(1+\cos h)}
. . . =\;-\frac{\sin h}{h}\cdot\frac{\sin h}{\cos h(1+\cos h)}Thus: .\lim_{h\to0}\left[-\frac{\sin h}{h}\cdot\frac{\sin h}{\cos h(1 + \cos h)} \right] \:=\:-1\cdot\frac{0}{1(2)} \:=\:0