MHB Right Isosceles triangle: solve for the length of the unknown legs

  • Thread starter Thread starter urekmazino
  • Start date Start date
  • Tags Tags
    Length Triangle
AI Thread Summary
In a right isosceles triangle with a hypotenuse of length 1, the lengths of the legs can be found using the Pythagorean theorem. Setting the length of each leg as "x," the equation becomes x² + x² = 1², simplifying to 2x² = 1. Solving for x gives x² = 1/2, leading to x = √(1/2). Rationalizing the denominator results in x = √2/2. Thus, the length of each leg in the triangle is √2/2.
urekmazino
Messages
3
Reaction score
0
For a right isosceles triangle (45-45-90) of hypotenuse 1, solve for the length of the unknown legs. Give an exact answer and rationalize the denominator in the final answer.
 
Mathematics news on Phys.org
kindly in form what you have tried so that we can help you
 
Call the length of each leg "x" and set up the Pythagorean theorem. Solve for x.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top