I Rodrigues' Formula for Laguerre equation

Click For Summary
The discussion revolves around deriving the Rodrigues formula for the Laguerre polynomial solutions from the Laguerre ordinary differential equation. The user identifies the weight function as \( w(x) = e^{-x} \) and attempts to express \( L_n(x) \) but struggles with the normalization factor \( \frac{1}{n!} \). This factor is explained as a normalization constant that ensures the orthogonality condition of the Laguerre polynomials over the interval \([0, \infty)\). The normalization is verified through integration and the use of Leibniz's rule. Ultimately, the user confirms their understanding of the derivation and the role of the normalization constant.
appmathstudent
Messages
6
Reaction score
2
TL;DR
Rodrigues' Formula for Laguerre equation
This is exercise 12.1.2 a from Arfken's Mathematical Methods for Physicists 7th edition :Starting from the Laguerre ODE,

$$xy''+(1-x)y'+\lambda y =0$$

obtain the Rodrigues formula for its polynomial solutions $$L_n (x)$$

According to Arfken (equation 12.9 ,chapter 12) the Rodrigues formula is :

$$ y_n(x) = \frac {1}{w(x)}(\frac{d}{dx})^n[w(x)p(x)^n]$$

I found that $$w(x) = e^{-x}$$ and then :

$$L_n(x) = e^x (\frac{d}{dx})^n[e^{-x}x^n]$$

But the answer is ,according to Arfken and everywhere else I look,is :

$$L_n(x)=\frac{e^x}{n!}.\frac{d^n}{dx^n}(x^ne^{-x})$$

I can't figure out exactly how $$ \frac{1}{n!}$$ appeared.
I think it might be related to the fact that $$ L_n(x) =\sum_{k=0}^n \binom{n}{k} \frac{(-x)^k}{k!} \quad $$

Any help will be appreciated , thank you
 
Mathematics news on Phys.org
You can have any constant factor you want and the result is still a solution. The factor of ##\frac 1 {n!}## may simply be the convention.
 
The ##\frac{1}{n!}## is the normalisation constant, it ensures that:

\begin{align*}
\int_0^\infty e^{-x} L_n (x) L_n (x) dx = 1
\end{align*}

Explicitly, it ensures that:

\begin{align*}
\frac{1}{(n!)^2} \int_0^\infty e^{x} \frac{d^n}{dx^n} (x^n e^{-x}) \frac{d^n}{dx^n} (x^n e^{-x}) dx = 1
\end{align*}

This can be verified by using Leibnitz and some integration by parts:

\begin{align*}
& \frac{1}{(n!)^2} \int_0^\infty \left( \sum_{k=0}^n (-1)^{n-k} \frac{n!}{k! (n-k)!} x^{n-k} \right) \frac{d^n}{dx^n} (x^n e^{-x}) dx
\nonumber \\
& = \frac{1}{n!} \int_0^\infty x^n e^{-x} dx
\nonumber \\
& = \frac{1}{n!} n! = 1 .
\end{align*}

I'll leave you to fill in the details.
 
  • Like
Likes PeroK and appmathstudent
Thank you very much! I think I got it now
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...