MHB Root Test/Comparison for $\sum_{k=1}^{\infty}\frac{(-3)^{k+1}}{4^{2k}}$

  • Thread starter Thread starter ineedhelpnow
  • Start date Start date
  • Tags Tags
    Test
ineedhelpnow
Messages
649
Reaction score
0
comparison or root test? for testing convergence/divergence $\sum_{k=1}^{\infty}\frac{(-3)^{k+1}}{4^{2k}}$
 
Physics news on Phys.org
ineedhelpnow said:
comparison or root test? for testing convergence/divergence $\sum_{k=1}^{\infty}\frac{(-3)^{k+1}}{4^{2k}}$

You can use the ratio test. Rewriting the summands as $-3 (-3/16)^k$ for each $k$, you find that $\lim_{k \to \infty} |a_{k+1}/a_k| = 3/16 < 1$, where $a_k = -3 (-3/16)^k$. So by the ratio test, your series converges. In general, a geometric series $\sum_{k = 1}^\infty ar^{k-1}$ converges if $|r| < 1$ and diverges if $|r| > 1$.
 
The root test works okay too...
 
Back
Top