MHB Roots of $g'(x)$ in AP: Proving the Theory

Click For Summary
The discussion centers on proving that if the roots of a fourth degree polynomial g(x)=0 are in arithmetic progression (AP), then the roots of its derivative g'(x)=0 must also be in AP. Participants share their solutions and insights, highlighting the elegance of the proof. One user humorously compliments another's intelligence while offering a treat as a gesture of appreciation. Additional solutions and references from online sources are also mentioned, contributing to the exploration of the topic. The conversation emphasizes the mathematical relationship between the roots of a polynomial and its derivative.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The roots of a fourth degree polynomial $g(x)=0$ are in an AP (arithmetic progression). Prove that the roots of $g'(x)=0$ must also form an AP.
 
Mathematics news on Phys.org
My solution:

Without loss of generality, let us horizontally translate the function $g$ such that it is even in our coordinate system:

$$g(x)=(x+a)(x+3a)(x-a)(x-3a)=\left(x^2-a^2\right)\left(x^2-9a^2\right)$$

Hence:

$$g'(x)=2x\left(x^2-9a^2\right)+2x\left(x^2-a^2\right)=4x(x+\sqrt{5}a)(x-\sqrt{5}a)=0$$

We see that the roots of $g'$ are in fact in an AP.
 
MarkFL said:
My solution:

Without loss of generality, let us horizontally translate the function $g$ such that it is even in our coordinate system:

$$g(x)=(x+a)(x+3a)(x-a)(x-3a)=\left(x^2-a^2\right)\left(x^2-9a^2\right)$$

Hence:

$$g'(x)=2x\left(x^2-9a^2\right)+2x\left(x^2-a^2\right)=4x(x+\sqrt{5}a)(x-\sqrt{5}a)=0$$

We see that the roots of $g'$ are in fact in an AP.

Aww...you're certainly very intelligent and smart, aren't you, MarkFL? Hehehe...

For this so elegant solution, I want to treat you something that you really like, and that is, ta da! Pecan Pie!

http://www.countryliving.com/cm/countryliving/images/Yd/Pecan-Pie-southern-pecan-pie-de.jpg
 
I also want to share a solution that I saw online, and here it goes:

Let's consider only the case with four real distinct roots $a,\,a+r,\,a+2r,\,a+3r$ with $r>0$.

Then $g(x)=k(x-a)(x-a-r)(x-a-2r)(x-a-3r)$ for some $k,\,r\ne 0$.

And so $g\left(\dfrac{rx}{2}+a-\dfrac{3r}{2}\right)=\dfrac{kr^4}{16}(x-3)(x-1)(x+1)(x+3)=\dfrac{kr^4}{16}(x^4-10x^2+9)$

$\begin{align*}\dfrac{r}{2}g'\left(\dfrac{rx}{2}+a-\dfrac{3r}{2}\right)&=\dfrac{kr^4}{16}(4x^3-20x)\\&=\dfrac{kr^4}{4}x(x^2-5)\\&=\dfrac{kr^4}{4}x(x-\sqrt{5})(x+\sqrt{5})\end{align*}$

Since $g'\left(\dfrac{rx}{2}+a-\dfrac{3r}{2}\right)$ has three distinct roots in AP, it is immediate to get that the roots of $g'(x)$ must also form an AP.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K