MHB Ross' question via email about a derivative.

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative Email
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the derivative (with respect to t) of $\displaystyle \begin{align*} y = 16\,\left[ \sinh{(7\,t)} \right] ^3 \cosh{(7\,t )} \end{align*}$?

One way to do this is to apply the product rule. To do this, we need to know the derivative of each factor.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \right\} &= 7 \cdot \cosh{( 7\,t )} \cdot 3\left[ \sinh{(7\,t)} \right] ^2 \\ &= 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \end{align*}$

and

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t}\,\left[ \cosh{(7\,t)} \right] = 7\,\sinh{(7\,t)} \end{align*}$

so that means

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 16 \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \cdot 7\,\sinh{(7\,t)} + 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \cdot \cosh{(7\,t)} \right\} \\ &= 112\,\left[ \sinh{(7\,t)} \right] ^2 \, \left\{ \left[ \sinh{(7\,t)} \right] ^2 + 3\, \left[ \cosh{(7\,t)} \right] ^2 \right\} \end{align*}$A more sophisticated method is to use hyperbolic identities to simplify the function before trying to differentiate.

Since $\displaystyle \begin{align*} \sinh{(2\,x)} \equiv 2\sinh{(x)}\cosh{(x)} \end{align*}$ and $\displaystyle \begin{align*} \cosh{(2\,x)} \equiv 1 + 2\,\left[ \sinh{(x)} \right] ^2 \end{align*}$ that means

$\displaystyle \begin{align*} y &= 16\,\left[ \sinh{(7\,t)} \right] ^3\cosh{(7\,t)} \\ &= 8 \,\left[ \sinh{(7\,t)} \right] ^2 \cdot 2\sinh{(7\,t)}\cosh{(7\,t)} \\ &= 8 \cdot \frac{1}{2} \, \left[ \cosh{(14\,t)} - 1 \right] \sinh{(14\,t)} \\ &= 4\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2\cdot 2\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2 \sinh{(28\,t)} - 4\sinh{(14\,t)} \\ \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 2 \cdot 28 \cosh{(28\,t)} - 4\cdot 14\cosh{(14\,t)} \\ &= 56\cosh{(28\,t)} - 56\cosh{(14\,t)} \end{align*}$

This can be shown to be equivalent to the answer given above.
 
Last edited:
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top