MHB Ross' question via email about a derivative.

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative Email
Click For Summary
The derivative of the function y = 16[ sinh(7t) ]^3 cosh(7t) with respect to t can be calculated using the product rule. The derivatives of the individual components are found, leading to the expression for dy/dt. An alternative method involves simplifying the function using hyperbolic identities, ultimately yielding the same derivative result. The final derivative is expressed as dy/dt = 56 cosh(28t) - 56 cosh(14t). Both methods confirm the equivalence of the results, showcasing different approaches to differentiation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the derivative (with respect to t) of $\displaystyle \begin{align*} y = 16\,\left[ \sinh{(7\,t)} \right] ^3 \cosh{(7\,t )} \end{align*}$?

One way to do this is to apply the product rule. To do this, we need to know the derivative of each factor.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \right\} &= 7 \cdot \cosh{( 7\,t )} \cdot 3\left[ \sinh{(7\,t)} \right] ^2 \\ &= 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \end{align*}$

and

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t}\,\left[ \cosh{(7\,t)} \right] = 7\,\sinh{(7\,t)} \end{align*}$

so that means

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}t} &= 16 \, \left\{ \left[ \sinh{(7\,t)} \right] ^3 \cdot 7\,\sinh{(7\,t)} + 21\cosh{(7\,t)}\left[ \sinh{(7\,t)} \right] ^2 \cdot \cosh{(7\,t)} \right\} \\ &= 112\,\left[ \sinh{(7\,t)} \right] ^2 \, \left\{ \left[ \sinh{(7\,t)} \right] ^2 + 3\, \left[ \cosh{(7\,t)} \right] ^2 \right\} \end{align*}$A more sophisticated method is to use hyperbolic identities to simplify the function before trying to differentiate.

Since $\displaystyle \begin{align*} \sinh{(2\,x)} \equiv 2\sinh{(x)}\cosh{(x)} \end{align*}$ and $\displaystyle \begin{align*} \cosh{(2\,x)} \equiv 1 + 2\,\left[ \sinh{(x)} \right] ^2 \end{align*}$ that means

$\displaystyle \begin{align*} y &= 16\,\left[ \sinh{(7\,t)} \right] ^3\cosh{(7\,t)} \\ &= 8 \,\left[ \sinh{(7\,t)} \right] ^2 \cdot 2\sinh{(7\,t)}\cosh{(7\,t)} \\ &= 8 \cdot \frac{1}{2} \, \left[ \cosh{(14\,t)} - 1 \right] \sinh{(14\,t)} \\ &= 4\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2\cdot 2\cosh{(14\,t)}\sinh{(14\,t)} - 4\sinh{(14\,t)} \\ &= 2 \sinh{(28\,t)} - 4\sinh{(14\,t)} \\ \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= 2 \cdot 28 \cosh{(28\,t)} - 4\cdot 14\cosh{(14\,t)} \\ &= 56\cosh{(28\,t)} - 56\cosh{(14\,t)} \end{align*}$

This can be shown to be equivalent to the answer given above.
 
Last edited:
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K