- #1
John1767
- 8
- 2
- Homework Statement
- A ramp is set up on top of a table. An object is supposed to roll freely down the ramp off the table and have a horizontal displacement. Two objects are used in the same setup. One is a hollow hoop and another is a solid disk. The rotational inertia of the disk is higher than the rotational inertia of the hoop, their mass and radii are the same. Which object will have the larger horizontal displacement?
- Relevant Equations
- Krotational=1/2lw^2 Ktranslational=1/2mv^2 Ug=mgh Ihoop=MR^2 Idisk=1/2MR^2 tnet=I(alpha)
I know that a hoop should have a higher rotational inertia than a solid disk because its mass is distributed further from the axis of rotation. What I don't understand is how a disk of the same mass and radius can have a higher rotational inertia. If the objects roll freely their axes of rotation should be about their center so the equations I=MR^2 for the hoop and I=1/2MR^2 for the disk should apply. How can a disk somehow have a higher rotational inertia? I know that the disk should travel further than the hoop but this suggests the opposite.