Raghav Gupta said:
How we cannot apply row and column operation simultaneously on matrix when finding its inverse by elementary transformation but can apply it in determinant?
I think kernel and image gets disturbed in a matrix, though I don't know what it actually is.
Why not in determinant case?
Row operations are equivalent to left multiplication by corresponding elementary matrices, column operations are equivalent to right multiplication. So, when you perform row operations on a (square) matrix ##A##, you get a matrix ##E## (the product of corresponding elementary matrices) such that ##EA=I##. For square matrices that means that ##E=A^{-1}##; performing the same row operations on the right hand side ##I## you get ##EI=E=A^{-1}##.
Again, you can find the inverse performing only column operations: you get a matrix ##E## (the product of corresponding elementary matrices) such that ##AE=I##, which again means that ##E=A^{-1}##. Performing the same column operations on the right hand side ##I## you get there ##IE=E=A^{-1}##.
If you perform both row and column operations you get two matrices ##E_1## and ##E_2## such that ##E_1AE_2=I##, so in the right hand side you get ##E_1IE_2=E_1E_2##. For ##E_1E_2## to be the inverse of ##A## you need ##AE_1E_2=I## (or equivalently ##E_1E_2A =I##), and you have ##E_1AE_2=I##. Matrix multiplication is not commutative, so there is no reason for the latter identity imply the former.
"No reason" is not a formal proof that the method does not work, for the formal proof you need a counterexample. You can find it just by playing with applying row and column operations to ##2\times 2## matrices. There are also more scientific method of constructing a counterexample.
The reason that applying both row and column operations is that while ##E_1AE_2=I## does not imply that ##E_1E_2=A^{-1}## it implies that ##\operatorname{det} (E_1E_2)=\operatorname{det} A^{-1}##. Namely, $$1=\operatorname{det}(E_1AE_1) = \operatorname{det} E_1 \operatorname{det} A \operatorname{det}E_2,$$ so $$\operatorname{det}(E_1E_2) \operatorname{det}E_1\operatorname{det}E_2= (\operatorname{det}A)^{-1} =\operatorname{det}A^{-1}.$$
Finally, for invertible matrices the image is all ##\mathbb R^n## and the kernel is always trivial (i.e. ##\{\mathbf 0\}##), they cannot be "disturbed" by row/column operations, they will remain the same.