S6-7.1.79 log integral u substitution

Click For Summary
SUMMARY

The discussion focuses on solving the integral $$I=\int_{0}^{\infty} \frac{\ln\left({\frac{1}{u}}\right)}{1+\frac{1}{{u}^{2}}} {u}^{2} \,du$$ using the substitution $$x = \frac{1}{u}$$. Participants clarify the relationship between two integrals and confirm that $$\int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x }$$ equals $$-\int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x }$$, leading to the conclusion that the integral evaluates to zero. The discussion highlights the importance of proper substitution and understanding the properties of logarithmic functions in integrals.

PREREQUISITES
  • Understanding of integral calculus, specifically improper integrals.
  • Familiarity with logarithmic functions and their properties.
  • Knowledge of substitution methods in integration.
  • Basic understanding of limits and convergence of integrals.
NEXT STEPS
  • Study the properties of logarithmic integrals in greater depth.
  • Learn about improper integrals and their convergence criteria.
  • Explore advanced techniques in integration, such as contour integration.
  • Investigate the use of substitution in solving complex integrals.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and integral theory, as well as anyone preparing for advanced studies in mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{7.R.79} $
$\tiny\text{UHW 242 log integral }$
https://www.physicsforums.com/attachments/5717
$$\begin{align}
\displaystyle
x& = \frac{1}{u} & {u}^{2 }du&={dx }
\end{align} $$
$$I=\int_{0}^{\infty}
\frac
{\ln\left({\frac{1}{u}}\right)}
{1+\frac{1}{{u}^{2 }}}
{u}^{2}
\,du \\
Stuck🐮
$$$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄
 
Physics news on Phys.org
karush said:
$\large{7.R.79} $
$\tiny\text{UHW 242 log integral }$

$$\begin{align}
\displaystyle
x& = \frac{1}{u} & {u}^{2 }du&={dx }
\end{align} $$
$$I=\int_{0}^{\infty}
\frac
{\ln\left({\frac{1}{u}}\right)}
{1+\frac{1}{{u}^{2 }}}
{u}^{2}
\,du \\
Stuck🐮
$$$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄

You can simplify the integral more and represent it in terms of the original integral.
 
karush said:
$\large{7.R.79} $
$\tiny\text{UHW 242 log integral }$

$$\begin{align}
\displaystyle
x& = \frac{1}{u} & {u}^{2 }du&={dx }
\end{align} $$
$$I=\int_{0}^{\infty}
\frac
{\ln\left({\frac{1}{u}}\right)}
{1+\frac{1}{{u}^{2 }}}
{u}^{2}
\,du \\
Stuck🐮
$$$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄

If $\displaystyle \begin{align*} x = \frac{1}{u} \end{align*}$ then $\displaystyle \begin{align*} \mathrm{d}x = -\frac{1}{u^2}\,\mathrm{d}u \end{align*}$, not $\displaystyle \begin{align*} u^2\,\mathrm{d}u \end{align*}$. Now notice that if $\displaystyle \begin{align*} x \to 0^+ \end{align*}$ then $\displaystyle \begin{align*} u \to \infty \end{align*}$ and if $\displaystyle \begin{align*} x \to \infty \end{align*}$ then $\displaystyle \begin{align*} u \to 0 \end{align*}$. This gives

$\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x } &= \int_{\infty}^0{ \frac{\ln{\left( \frac{1}{u} \right) }}{1 + \left( \frac{1}{u} \right) ^2}\,\left( -\frac{1}{u^2} \right) \,\mathrm{d}u } \\ &= \int_0^{\infty}{ \frac{ \ln{ \left( \frac{1}{u} \right) } }{ u^2\,\left( 1 + \frac{1}{u^2} \right) } \,\mathrm{d}u } \\ &= \int_0^{\infty}{ \frac{\ln{ \left( \frac{1}{u} \right) }}{1 + u^2}\,\mathrm{d}u } \end{align*}$

Can you see a relationship between the two integrals?
 
Are you referring to
$$\int_b^a f(x) \ dx = -\int_a^b f(x) \ dx $$

Forget what this called nor do I know why🐮
 
karush said:
Are you referring to
$$\int_b^a f(x) \ dx = -\int_a^b f(x) \ dx $$

Forget what this called nor do I know why🐮

Yes I did use that rule.

Anyway, to finish off the problem, would you agree that $\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{\left( \frac{1}{u} \right)}}{1+u^2}\,\mathrm{d}u} \end{align*}$ will have exactly the same value as $\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{ \left( \frac{1}{x} \right) }}{1 + x^2}\,\mathrm{d}x } \end{align*}$? All that's happened is there is a different letter being used in the place of the variable.

So from our original equation $\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x } = \int_0^{\infty}{ \frac{\ln{ \left( \frac{1}{u} \right) }}{1 + u^2}\,\mathrm{d}u } \end{align*}$ we can write $\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x } = \int_0^{\infty}{ \frac{\ln{ \left( \frac{1}{x} \right) }}{1 + x^2}\,\mathrm{d}x } \end{align*}$.

Now since $\displaystyle \begin{align*} \ln{ \left( \frac{1}{x} \right) } = \ln{ \left( x^{-1} \right) } = -\ln{(x)} \end{align*}$ that means we have $\displaystyle \begin{align*} \int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x } = -\int_0^{\infty}{ \frac{\ln{(x)}}{1 + x^2}\,\mathrm{d}x } \end{align*}$ and so the final result should now be obvious.
 
There is another approach to see that the integral goes to 0. Set $x=e^{-t}$. And realize the function generated is odd.
 
ZaidAlyafey said:
There is another approach to see that the integral goes to 0. Set $x=e^{-t}$. And realize the function generated is odd.
I really appreciate all the help with this
the class starts August 22.
so feeling more confident I will do well
due to this forum.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K