I ##S_{n}(\alpha)=\sum_{k=1}^{n} (-1)^{\lfloor{k\alpha\rfloor}}##

elias001
Messages
365
Reaction score
24
TL;DR Summary
I would like to know how to show ##S_{n}(\alpha)=\sum_{k=1}^{n} (-1)^{\lfloor{k\alpha\rfloor}}##.
For the following question, I am not sure how to go about solving it.

For ##n\in \mathbb{N}## and ##\alpha \in \mathbb{R}##, let ##S_{n}(\alpha)=\sum_{k=1}^{n} (-1)^{\lfloor{k\alpha\rfloor}}.## Prove that if ##\alpha## is irrational, then ##S_{n}(\alpha)=0## for infinitely many ##n \in \mathbb{N}##

I tried the following computational examples to check if the statement is true.

##S_{n}(\alpha)## for:

##n = 1## and ##\alpha = \pi##, ##S_{1}=(\pi)=-1##

##n = 2## and ##\alpha = \pi##, ##S_{2}=(\pi)= (-1)^{\lfloor{\pi\rfloor}} +(-1)^{\lfloor{2\pi\rfloor}} = (-1) + 1 = 0##

##n = 3## and ##\alpha = \pi##, ##S_{3}=(\pi)= (-1)^{\lfloor{\pi\rfloor}} +(-1)^{\lfloor{2\pi\rfloor}} + (-1)^{\lfloor{3\pi\rfloor}} = (-1) + 1 + (-1) = -1##

##n = 4## and ##\alpha = \pi##, ##S_{4}=(\pi)= (-1)^{\lfloor{\pi\rfloor}} +(-1)^{\lfloor{2\pi\rfloor}} + (-1)^{\lfloor{3\pi\rfloor}} + (-1)^{\lfloor{4\pi\rfloor}} = (-1) + 1 + (-1) + 1 = 0##

For:

##n = 1## and ##\alpha =e##, ##S_{1}=(e)=1##

##n = 2## and ##\alpha =e##, ##S_{2}=(e)= (-1)^{\lfloor{e\rfloor}} +(-1)^{\lfloor{2e\rfloor}} = 1 + (-1) = 0##

##n = 3## and ##\alpha =e##, ##S_{3}=(e)= (-1)^{\lfloor{e\rfloor}} +(-1)^{\lfloor{2e\rfloor}} + (-1)^{\lfloor{3e\rfloor}} = 1 + (-1) + 1 = 1 ##

##n = 4## and ##\alpha =e##, ##S_{4}=(e)= (-1)^{\lfloor{e\rfloor}} +(-1)^{\lfloor{2e\rfloor}} + (-1)^{\lfloor{3e\rfloor}} + (-1)^{\lfloor{4e\rfloor}} = 1 + (-1) + 1 + 1 = 2##

Thank you in advance.
 
Physics news on Phys.org
I let EXCEL calcuate up to n=40 for approximate values of sqrt(2) and e.

1751080896217.webp


Without losing generality we can make ##|\alpha|<1## by adding/deleting even numbers. For example ##\pi-4## instead of ##\pi##, ##\sqrt{2}-2## instead of ##\sqrt{2}## work. ##\alpha## and -##\alpha## are equivalent in the behavior with opposite siganure, so further we can reduce ##0<\alpha<1##. Please find the graph showing for each k on x axis, +1 or -1. We find that + and - are almost same in number which shows sum =0 would take place infinite times though it is not proved yet.
1751160146797.webp
 
Last edited:
Either you have some theorem that just surprisingly crushes this, or my guess is you're going to have to think about how you can approximate irrational numbers with rational numbers and use what happens to this with rational numbers. So the first thing I would do is think about what happens if ##\alpha## is rational actually.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top