1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Saddle point in trapping region

  1. Apr 28, 2012 #1
    hi all,

    i have a question regarding saddle points. i'm looking at a 2D system which has a trapping region, all trajectories on the boundary point in. from strogatz's book on nonlinear systems i've read about index theory and so as i understand it the index of this region is +1 and the sum of the indices of any fixed points inside that region should also = +1. i understand that stable and unstable fixed points have index +1 whilst saddle points have index -1.

    presumably this mean that it is possible for two unstable fixed points and a saddle to exist within this trapping region. i can't really visualize this topology however and i'm trying to work out whether limit cycles would have to exist about the two unstable fixed points or if all trajectories some how end up on the stable manifold of the saddle and are attracted to the saddle point? i'm pretty new to nonlinear systems analysis so i've probably misunderstood something somewhere which would explain which of these two scenarios actually occurs. hopefully someone can point me in the right direction?
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted