MHB Salim's question at Yahoo Answers regarding trigonometry and circular sectors

AI Thread Summary
The discussion centers on solving a trigonometry problem involving a triangle ABC and a circular sector on side BC. The key steps include using the Law of Cosines to find the angle A and calculating the areas of both the circular sector and the triangle. The area of the circular sector is derived from the angle θ, while the area of triangle ABC is expressed in terms of its sides and angle A. By equating the area of the circular sector to that of the triangle, a formula for angle A is established. This approach effectively combines trigonometric principles with geometric area calculations.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to solve this maths problem?


So we have a triangle ABC with given sides. On the BC side, there's a part of a circle (we do not know how much of a circle). We are asked to find the angle A to ensure that the part of a circle has the same area as the triangle. The problem boils down to finding how to calculate the area of the part of circle. So how would you go about doing it?
Thanks

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Re: Salim's question at Yahoo! Answers regarding trignometry and circular sectors

Hello Salim,

Please refer to the following diagram:

View attachment 1805

We may determine $\theta$ using the Law of Cosines:

$$a^2=2r^2\left(1-\cos(\theta) \right)$$

$$\theta=\cos^{-1}\left(\frac{2r^2-a^2}{2r^2} \right)$$

From this, we may determine the area $A_S$ of circular sector $OBC$:

$$A_S=\frac{1}{2}r^2\theta=\frac{1}{2}r^2\cos^{-1}\left(\frac{2r^2-a^2}{2r^2} \right)$$

And we may now also determine the area $A_T$ of triangle $OBC$:

$$A_T=\frac{1}{2}r^2\sin(\theta)=\frac{1}{2}r^2\frac{a\sqrt{4r^2-a^2}}{2r^2}=\frac{a\sqrt{4r^2-a^2}}{4}$$

Thus the portion of the circle's area $A_O$ outside the triangle is:

$$A_O=\pi r^2-\frac{1}{2}r^2\cos^{-1}\left(\frac{2r^2-a^2}{2r^2} \right)+\frac{a\sqrt{4r^2-a^2}}{4}$$

Equating this to the area of triangle $ABC$, we obtain:

$$\frac{1}{2}bc\sin(A)=\pi r^2-\frac{1}{2}r^2\cos^{-1}\left(\frac{2r^2-a^2}{2r^2} \right)+\frac{a\sqrt{4r^2-a^2}}{4}$$

Hence, solving for $A$, we obtain:

$$A=\sin^{-1}\left(\frac{2r^2\left(2\pi-\cos^{-1}\left(\dfrac{2r^2-a^2}{2r^2} \right) \right)+a\sqrt{4r^2-a^2}}{2bc} \right)$$
 

Attachments

  • salim.jpg
    salim.jpg
    8.2 KB · Views: 101
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top