Same RF signal to both gates of MOSFET --> Better linearity?

  • Thread starter Thread starter Swamp Thing
  • Start date Start date
  • Tags Tags
    Linearity
AI Thread Summary
Applying the same RF input to both gates of a dual-gate MOSFET can enhance linearity, as described in a dual-gate MOSFET follower stage. However, this configuration may lead to higher harmonic levels due to RF mixing with itself, raising concerns about intermodulation products. Optimal DC biasing is crucial for achieving better performance, and the transition from a tetrode to a triode characteristic can help in managing distortion. The dual-gate design allows for a multiplicative mixer effect, where the drain current is influenced by the product of the gate voltages. Ultimately, while the triode characteristic may reduce even-order harmonics, it also introduces challenges such as increased capacitance due to the Miller effect.
Swamp Thing
Insights Author
Messages
1,032
Reaction score
770
From 03:39 the presenter describes a dual-gate MOSFET follower stage. He states that he gets better linearity by applying the same RF input to both gates (with different DC biasing of course).



Considering that many MOSFET mixer circuits have RF and LO applied separately to the two gates, won't the RF mix with itself in the described circuit, resulting in higher harmonic levels?

If the trick is in optimal biasing, are there any sources that discuss this technique?
 
Engineering news on Phys.org
The single gate MOSFET is a three electrode device, or triode, whereas the dual gate MOSFET is a four electrode device, or tetrode. When the two gates are strapped together, we turn the tetrode into a triode. The former has a transfer characteristic which is S-shaped, so we see flattening of the peaks, and above a certain threshold we observe odd-order harmonics and intermodulation. On the other hand, the triode has a square law characteristic, so for large signals we see even-order distortion, giving rise to even harmonics. This effect is linearised to some extent by using a high value load resistance.

It is likely that generation of even order harmonics will be less troublesome than the generation of intermodulation products, which can lie near the wanted signal and be impossible to remove. A disadvantage of the triode is the higher capacitance between drain and gate, which is multiplied by the gain and appears across the input (the Miller effect). In the present application the device is driven by a small antenna element having a capacitance of a few picofarads, so the input capacitance needs to be somewhat smaller than this.

The two gates of a dual gate MOSFET each control the drain current, so the drain current is proportional to their product. As you mention, this a enables the device to work as a multiplicative mixer, where the signal V is applied to G1 and the local oscillator (LO) to G2. The instantaneous LO voltage then controls the gain applied to the signal, resulting in mixing action.

When G1 and G2 are strapped together, as in the present case, the drain current will depend on Vg1 x Vg2 = V^2, so we obtain a triode characteristic.

Although it is my understanding that, with a low resistance load, FETs exhibit a square law characteristic, for a vacuum triode I believe we see an exponent of 3/2.
 
  • Informative
Likes Swamp Thing
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top