Same RF signal to both gates of MOSFET --> Better linearity?

  • Thread starter Thread starter Swamp Thing
  • Start date Start date
  • Tags Tags
    Linearity
AI Thread Summary
Applying the same RF input to both gates of a dual-gate MOSFET can enhance linearity, as described in a dual-gate MOSFET follower stage. However, this configuration may lead to higher harmonic levels due to RF mixing with itself, raising concerns about intermodulation products. Optimal DC biasing is crucial for achieving better performance, and the transition from a tetrode to a triode characteristic can help in managing distortion. The dual-gate design allows for a multiplicative mixer effect, where the drain current is influenced by the product of the gate voltages. Ultimately, while the triode characteristic may reduce even-order harmonics, it also introduces challenges such as increased capacitance due to the Miller effect.
Swamp Thing
Insights Author
Messages
1,030
Reaction score
769
From 03:39 the presenter describes a dual-gate MOSFET follower stage. He states that he gets better linearity by applying the same RF input to both gates (with different DC biasing of course).



Considering that many MOSFET mixer circuits have RF and LO applied separately to the two gates, won't the RF mix with itself in the described circuit, resulting in higher harmonic levels?

If the trick is in optimal biasing, are there any sources that discuss this technique?
 
Engineering news on Phys.org
The single gate MOSFET is a three electrode device, or triode, whereas the dual gate MOSFET is a four electrode device, or tetrode. When the two gates are strapped together, we turn the tetrode into a triode. The former has a transfer characteristic which is S-shaped, so we see flattening of the peaks, and above a certain threshold we observe odd-order harmonics and intermodulation. On the other hand, the triode has a square law characteristic, so for large signals we see even-order distortion, giving rise to even harmonics. This effect is linearised to some extent by using a high value load resistance.

It is likely that generation of even order harmonics will be less troublesome than the generation of intermodulation products, which can lie near the wanted signal and be impossible to remove. A disadvantage of the triode is the higher capacitance between drain and gate, which is multiplied by the gain and appears across the input (the Miller effect). In the present application the device is driven by a small antenna element having a capacitance of a few picofarads, so the input capacitance needs to be somewhat smaller than this.

The two gates of a dual gate MOSFET each control the drain current, so the drain current is proportional to their product. As you mention, this a enables the device to work as a multiplicative mixer, where the signal V is applied to G1 and the local oscillator (LO) to G2. The instantaneous LO voltage then controls the gain applied to the signal, resulting in mixing action.

When G1 and G2 are strapped together, as in the present case, the drain current will depend on Vg1 x Vg2 = V^2, so we obtain a triode characteristic.

Although it is my understanding that, with a low resistance load, FETs exhibit a square law characteristic, for a vacuum triode I believe we see an exponent of 3/2.
 
  • Informative
Likes Swamp Thing
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top