1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Satellite orbiting around Earth - Spacetime Metric

  1. May 10, 2015 #1
    1. The problem statement, all variables and given/known data

    The metric near earth is ##ds^2 = -c^2 \left(1-\frac{2GM}{rc^2} \right)dt^2 + \left(1+\frac{2GM}{rc^2} \right)\left( dx^2+dy^2+dz^2\right)##.

    (a) Find all non-zero christoffel symbols for this metric.
    (b) Find satellite's period.
    (c) Why does ##R^i_{0j0} \simeq \partial_j \Gamma^i_{00} - \partial_0 \Gamma^i_{0j} = \frac{1}{2}\partial_i \partial_j g_{00}##?
    (d)Why does the separation grow in time?

    2012_B5_Q1.png


    2. Relevant equations


    3. The attempt at a solution

    Part(a)
    Let lagrangian be ##-c^2 d\tau^2 = -c^2 \left(1-\frac{2GM}{rc^2} \right) \dot {t}^2 + \left(1+\frac{2GM}{rc^2}\right)(\dot x^2 + \dot y^2 + \dot z^2)##. The corresponding geodesic equations are
    [tex] \ddot t + \frac{\left( \frac{GM}{r^2c^2} \right)}{1-\frac{2GM}{rc^2}} \dot r \dot t = 0[/tex]
    [tex]\ddot r - \frac{\left( \frac{GM}{r^2c^2} \right)}{1+\frac{2GM}{rc^2}} (\dot r)^2 + \frac{\left( \frac{GM}{r^2} \right)}{1+\frac{2GM}{rc^2}} (\dot t)^2 = 0 [/tex]
    The christoffel symbols are given by ##\Gamma^t_{rt} = \Gamma^t_{tr} = \frac{\left( \frac{GM}{r^2c^2} \right)}{1-\frac{2GM}{rc^2}}, \Gamma^r_{rr} = -\frac{\left( \frac{GM}{r^2c^2} \right)}{1+\frac{2GM}{rc^2}}, \Gamma^r_{tt} = \frac{\left( \frac{GM}{r^2} \right)}{1+\frac{2GM}{rc^2}} ##.

    Part (b)
    Given ##x=R \cos(\omega \tau)## and ##y = R \sin (\omega \tau)## and ##z=0## we have ##dx^2 + dy^2 + dz^2 = (R\omega)^2 d\tau^2##. The metric now becomes
    [tex]-c^2 d\tau^2 = -c^2 \left(1-\frac{2GM}{Rc^2} \right)dt^2 + \left(1+\frac{2GM}{Rc^2} \right)\left( (R\omega)^2 d\tau^2 \right)[/tex]
    This relates the time duration on earth ##dt## with proper time on satellite ##d\tau##.
    [tex]dt = \sqrt{\frac{1+ \left( \frac{R\omega}{c}\right)^2 \left( 1 + \frac{2GM}{Rc^2} \right) }{1 - \frac{2GM}{Rc^2}}} d\tau [/tex]

    Part(c)
    Under the approximation ##\frac{GM}{rc^2} \ll 1## the christoffel symbols become ##\Gamma^t_{rt} \approx \frac{GM}{r^2c^2}, \Gamma^r_{rr} \approx -\frac{GM}{r^2c^2}, \Gamma^r_{tt} \approx \frac{GM}{r^2}##.
    Not sure why ##R^i_{0j0} \simeq \partial_j \Gamma^i_{00} - \partial_0 \Gamma^i_{0j} = \frac{1}{2}\partial_i \partial_j g_{00}## holds. Is there some trick here?

    Regardless, we have
    [tex]\frac{1}{2}\partial_i \partial_j g_{00} = -\frac{GM}{c^2} \partial_i \partial_j \left[ (x_kx_k)^{-\frac{1}{2}}\right][/tex]
    [tex] = \frac{GM}{c^2} \partial_i \left[ (x_kx_k)^{-\frac{3}{2}} x_j \right][/tex]
    [tex]= \frac{GM}{c^2} \left[ \delta_{ij} (x_kx_k)^{-\frac{3}{2}}-3(x_kx_k)^{-\frac{5}{2}} x^i x^j \right][/tex]
    [tex] \frac{1}{2}\partial_i \partial_j g_{00} = \frac{GM}{c^2 r^3} \left[ \delta_{ij} -3\frac{x^i x^j}{r^2} \right][/tex]

    Part(d)
    I suppose one is nearer to the earth and experiences a stronger field than other. Thus the one closer to earth experiences a greater acceleration, so the spatial distances between them increases.
     
    Last edited: May 10, 2015
  2. jcsd
  3. May 14, 2015 #2
  4. May 16, 2015 #3
    bumpp on part (b) - satellite's period. The time experienced on earth is ##dt## while proper period is ##d\tau##, so is the period of the satellite observed on earth simply
    [tex]T = \sqrt{\frac{1+ \left( \frac{R\omega}{c}\right)^2 \left( 1 + \frac{2GM}{Rc^2} \right) }{1 - \frac{2GM}{Rc^2}}} \left(\frac{2\pi}{\omega}\right)[/tex]

    ?
     
  5. May 18, 2015 #4
    bump on period in (b)
     
  6. May 22, 2015 #5
    solved.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Satellite orbiting around Earth - Spacetime Metric
Loading...