MHB Sava's question via email about solving complex number equations

AI Thread Summary
The discussion focuses on solving the complex number equations z^3 + 1 = 0 and z^4 = 1 + i. For z^3 + 1 = 0, the solutions are derived using polar form, yielding three roots: z_1 = (1/2) + (√3/2)i, z_2 = -1, and z_3 = (1/2) - (√3/2)i. For z^4 = 1 + i, the magnitude is calculated as √2, leading to four roots expressed in polar form, with specific values determined for n = 0, 1, -1, and -2. Both equations are confirmed to be solved correctly, demonstrating the application of complex number theory.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}$

$\displaystyle \begin{align*} z^3 + 1 &= 0 \\ z^3 &= -1 \\ z^3 &= \mathrm{e}^{ \left( 2\,n + 1 \right) \,\pi\,\mathrm{i} } \textrm{ where } n \in \mathbf{Z} \\ z &= \left[ \mathrm{e}^{\left( 2\,n + 1 \right) \, \pi \,\mathrm{i}} \right] ^{\frac{1}{3}} \\ &= \mathrm{e}^{ \frac{\left( 2\,n + 1 \right) \,\pi}{3} \,\mathrm{i} } \end{align*}$

For the three solutions with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$, let $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \mathrm{e}^{ \frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( \frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} + \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \mathrm{e}^{ \frac{3\,\pi}{3}\,\mathrm{i} } \\ &= \mathrm{e}^{ \mathrm{\pi}\,\mathrm{i} } \\ &= \cos{ \left( \pi \right) } + \mathrm{i}\sin{ \left( \pi \right) } \\ &= -1 + 0\,\mathrm{i} \end{align*}$

If we let n be any larger, we would end up with an angle outside the acceptable range for the argument, so instead we will go the other way and let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \mathrm{e}^{ -\frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( -\frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( -\frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{\pi}{3} \right) } - \mathrm{i}\sin{\left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} - \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$
z^4 = 1 + \mathrm{i}

We should write this in polar form.

$\displaystyle \begin{align*} \left| z^4 \right| &= \sqrt{1^2 + 1^2} \\ &= \sqrt{1 + 1} \\ &= \sqrt{2} \end{align*}$

and as the number is in the first quadrant, that means

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \arctan{ \left( \frac{1}{1} \right) } \\ &= \arctan{ \left( 1 \right) } \\ &= \frac{\pi}{4} \end{align*}$

so we have

$\displaystyle \begin{align*} z^4 &= \sqrt{2} \,\mathrm{e}^{ \left( \frac{\pi}{4} + 2\,\pi\,n \right) \,\mathrm{i}} \textrm{ where } n \in \mathbf{Z} \\ z &= \left\{ \sqrt{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \, \pi}{4} \right] \,\mathrm{i} } \right\} ^{ \frac{1}{4} } \\ &= \sqrt[8]{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \,\pi }{16} \right] \,\mathrm{i} } \end{align*}$

Now to get the four roots with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$ we start by letting $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{ \pi}{16} \right) } \,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{9\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{9\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{9\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{9\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{9\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$

If we let n be anything greater, then we will end up with an argument outside our acceptable range, so instead let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{7\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{7\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{7\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{7\,\pi}{16} \right) } + \sqrt[2]{8}\sin{ \left( -\frac{7\,\pi}{16} \right) } \, \mathrm{i} \end{align*}$

and let $\displaystyle \begin{align*} n = -2 \end{align*}$ to find

$\displaystyle \begin{align*} z_4 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{15\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{15\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{15\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{15\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( -\frac{15\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$
 
Mathematics news on Phys.org
Both equations are solved correctly.

The first is:

##\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}##

The second equation does not display properly for me, but it is:

##\displaystyle z^4 = 1 + \mathrm{i}##
 
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top