Sava's question via email about solving complex number equations

Click For Summary
SUMMARY

The discussion focuses on solving complex number equations, specifically \( z^3 + 1 = 0 \) and \( z^4 = 1 + \mathrm{i} \). The solutions for \( z^3 + 1 = 0 \) are derived using polar form, yielding \( z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}\mathrm{i} \), \( z_2 = -1 \), and \( z_3 = \frac{1}{2} - \frac{\sqrt{3}}{2}\mathrm{i} \). For \( z^4 = 1 + \mathrm{i} \), the roots are calculated as \( z_1 = \sqrt[8]{2}\mathrm{e}^{\frac{\pi}{16}\mathrm{i}} \), \( z_2 = \sqrt[8]{2}\mathrm{e}^{\frac{9\pi}{16}\mathrm{i}} \), \( z_3 = \sqrt[8]{2}\mathrm{e}^{-\frac{7\pi}{16}\mathrm{i}} \), and \( z_4 = \sqrt[8]{2}\mathrm{e}^{-\frac{15\pi}{16}\mathrm{i}} \).

PREREQUISITES
  • Understanding of complex numbers and their polar representation
  • Familiarity with Euler's formula \( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)
  • Knowledge of the argument and modulus of complex numbers
  • Basic skills in solving polynomial equations
NEXT STEPS
  • Study the derivation of roots of unity in complex analysis
  • Learn about the application of De Moivre's Theorem in solving complex equations
  • Explore the geometric interpretation of complex numbers on the Argand plane
  • Investigate advanced topics in complex analysis, such as analytic functions and contour integration
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, engineers working with signal processing, and anyone interested in advanced algebraic techniques for solving equations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}$

$\displaystyle \begin{align*} z^3 + 1 &= 0 \\ z^3 &= -1 \\ z^3 &= \mathrm{e}^{ \left( 2\,n + 1 \right) \,\pi\,\mathrm{i} } \textrm{ where } n \in \mathbf{Z} \\ z &= \left[ \mathrm{e}^{\left( 2\,n + 1 \right) \, \pi \,\mathrm{i}} \right] ^{\frac{1}{3}} \\ &= \mathrm{e}^{ \frac{\left( 2\,n + 1 \right) \,\pi}{3} \,\mathrm{i} } \end{align*}$

For the three solutions with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$, let $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \mathrm{e}^{ \frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( \frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} + \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \mathrm{e}^{ \frac{3\,\pi}{3}\,\mathrm{i} } \\ &= \mathrm{e}^{ \mathrm{\pi}\,\mathrm{i} } \\ &= \cos{ \left( \pi \right) } + \mathrm{i}\sin{ \left( \pi \right) } \\ &= -1 + 0\,\mathrm{i} \end{align*}$

If we let n be any larger, we would end up with an angle outside the acceptable range for the argument, so instead we will go the other way and let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \mathrm{e}^{ -\frac{\pi}{3}\,\mathrm{i} } \\ &= \cos{ \left( -\frac{\pi}{3} \right) } + \mathrm{i}\sin{ \left( -\frac{\pi}{3} \right) } \\ &= \cos{ \left( \frac{\pi}{3} \right) } - \mathrm{i}\sin{\left( \frac{\pi}{3} \right) } \\ &= \frac{1}{2} - \frac{\sqrt{3}}{2}\,\mathrm{i} \end{align*}$
z^4 = 1 + \mathrm{i}

We should write this in polar form.

$\displaystyle \begin{align*} \left| z^4 \right| &= \sqrt{1^2 + 1^2} \\ &= \sqrt{1 + 1} \\ &= \sqrt{2} \end{align*}$

and as the number is in the first quadrant, that means

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \arctan{ \left( \frac{1}{1} \right) } \\ &= \arctan{ \left( 1 \right) } \\ &= \frac{\pi}{4} \end{align*}$

so we have

$\displaystyle \begin{align*} z^4 &= \sqrt{2} \,\mathrm{e}^{ \left( \frac{\pi}{4} + 2\,\pi\,n \right) \,\mathrm{i}} \textrm{ where } n \in \mathbf{Z} \\ z &= \left\{ \sqrt{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \, \pi}{4} \right] \,\mathrm{i} } \right\} ^{ \frac{1}{4} } \\ &= \sqrt[8]{2}\,\mathrm{e}^{ \left[ \frac{\left( 1 + 8\,n \right) \,\pi }{16} \right] \,\mathrm{i} } \end{align*}$

Now to get the four roots with $\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) \in \left( -\pi , \pi \right] \end{align*}$ we start by letting $\displaystyle \begin{align*} n = 0 \end{align*}$ to find

$\displaystyle \begin{align*} z_1 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{ \pi}{16} \right) } \,\mathrm{i} \end{align*}$

Let $\displaystyle \begin{align*} n = 1 \end{align*}$ to find

$\displaystyle \begin{align*} z_2 &= \sqrt[8]{2}\,\mathrm{e}^{ \frac{9\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( \frac{9\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( \frac{9\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( \frac{9\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( \frac{9\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$

If we let n be anything greater, then we will end up with an argument outside our acceptable range, so instead let $\displaystyle \begin{align*} n = -1 \end{align*}$ to find

$\displaystyle \begin{align*} z_3 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{7\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{7\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{7\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{7\,\pi}{16} \right) } + \sqrt[2]{8}\sin{ \left( -\frac{7\,\pi}{16} \right) } \, \mathrm{i} \end{align*}$

and let $\displaystyle \begin{align*} n = -2 \end{align*}$ to find

$\displaystyle \begin{align*} z_4 &= \sqrt[8]{2}\,\mathrm{e}^{ -\frac{15\,\pi}{16}\,\mathrm{i} } \\ &= \sqrt[8]{2}\,\left[ \cos{ \left( -\frac{15\,\pi}{16} \right) } + \mathrm{i}\sin{ \left( -\frac{15\,\pi}{16} \right) } \right] \\ &= \sqrt[8]{2}\cos{ \left( -\frac{15\,\pi}{16} \right) } + \sqrt[8]{2}\sin{ \left( -\frac{15\,\pi}{16} \right) } \,\mathrm{i} \end{align*}$
 
Physics news on Phys.org
Both equations are solved correctly.

The first is:

##\displaystyle \begin{align*} z^3 + 1 = 0 \end{align*}##

The second equation does not display properly for me, but it is:

##\displaystyle z^4 = 1 + \mathrm{i}##
 
  • Like
Likes   Reactions: Greg Bernhardt

Similar threads

  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
1K
Replies
11
Views
2K